K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

\(f'\left(x\right)=\dfrac{1}{cos^2\left(x-\dfrac{2\pi}{3}\right)}\Rightarrow f'\left(0\right)=\dfrac{1}{cos^2\left(-\dfrac{2\pi}{3}\right)}=4\)

NV
19 tháng 3 2022

14.

Hàm số ko xác định tại \(x=-1,x=2\) nên gián đoạn tại \(x=-1,x=2\)

A đúng

15.

\(\lim\limits_{x\rightarrow1^-}\dfrac{2x+1}{x-1}=-\infty\)

(Do \(\lim\limits_{x\rightarrow1^-}\left(2x+1\right)=3>0\) và \(x-1< 0\) khi \(x< 1\))

28 tháng 3 2022

D

28 tháng 3 2022

\(lim\dfrac{2\sqrt{7n^2-2n}}{3n+2}=lim\dfrac{2\sqrt{n^2\left(7-\dfrac{2}{n}\right)}}{3n+2}=lim\dfrac{2n\sqrt{7-\dfrac{2}{n}}}{n\left(3+\dfrac{2}{n}\right)}\)

\(=lim\dfrac{2\sqrt{7-\dfrac{2}{n}}}{3+\dfrac{2}{n}}=\dfrac{2\sqrt{7}}{3}\) \(=\dfrac{a\sqrt{7}}{b}\) 

Suy ra : a/b = 2/3 => a - b = -1 

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+2x+1-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-4}{1+1}+\dfrac{12}{1+1+1}=2\)

8 tháng 3 2021

undefined

NV
25 tháng 3 2021

\(\left\{{}\begin{matrix}\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\\\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}=0\end{matrix}\right.\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)

\(\Leftrightarrow\left(\overrightarrow{GG_0}+\overrightarrow{G_0A}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0B}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0C}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)

\(\Leftrightarrow4\overrightarrow{GG_0}+\overrightarrow{G_0A}+\left(\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AG_0}=4\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GG_0}=4\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{AG}=3\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{GA}=-3\overrightarrow{GG_0}\)

21 tháng 11 2023

loading...  

21 tháng 11 2023

loading...  loading...  loading...  

29 tháng 3 2021

\(y'=\left(m-1\right)\cos2x\cdot2-2\cdot\sin x-2m=0\)

\(\Leftrightarrow\left(m-1\right)\left(1-2\sin^2x\right)-\sin x-m=0\)

\(\Leftrightarrow2\left(1-m\right)\sin^2x-\sin x-1=0\)

bạn tự làm nốt nha

 

30 tháng 3 2021

Cảm ơn bạn nha

9 tháng 3 2021

a/ \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x^2-1}-2}{x-3}+\lim\limits_{x\rightarrow3}\dfrac{2-\sqrt[4]{1+5x}}{x-3}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x^2-1-8}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{16-1-5x}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4.\sqrt[3]{1+5x}+8\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{-5\left(x-3\right)}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4\sqrt[3]{1+5x}+8\right)}\)

\(=\dfrac{3+3}{\sqrt[3]{\left(3^2-1\right)^2}+2.\sqrt[3]{3^2-1}+4}-\dfrac{5}{\sqrt[4]{\left(1+5.3\right)^3}+2\sqrt[3]{\left(1+5.3\right)^2}+4.\sqrt[3]{1+5.3}+8}=\dfrac{11}{32}\)

\(\Rightarrow a^2+b^2=1145\)

9 tháng 3 2021

40/ 

\(L=\lim\limits_{x\rightarrow0}\dfrac{af\left(x\right)+b^n-b^n}{f\left(x\right)\left[\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+....+b^{n-1}\right]}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+...+b^{n-1}}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{b^{n-1}+b^{n-1}++...+b^{n-1}}=\dfrac{a}{nb^{n-1}}\)

 

NV
6 tháng 3 2022

\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x^4-5x^3+9}{x^4+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{2-\dfrac{5}{x}+\dfrac{9}{x^4}}{1+\dfrac{2}{x^4}}=\dfrac{2-0+0}{1+0}=2\)

14:

sin 2a=(sina+cosa)^2-1

=m^2-1