Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+2x+1-\sqrt[3]{6x+1}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)
\(=\dfrac{-4}{1+1}+\dfrac{12}{1+1+1}=2\)
\(\left\{{}\begin{matrix}\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\\\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}=0\end{matrix}\right.\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{GG_0}+\overrightarrow{G_0A}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0B}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0C}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)
\(\Leftrightarrow4\overrightarrow{GG_0}+\overrightarrow{G_0A}+\left(\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{AG_0}=4\overrightarrow{GG_0}\)
\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GG_0}=4\overrightarrow{GG_0}\)
\(\Rightarrow\overrightarrow{AG}=3\overrightarrow{GG_0}\)
\(\Rightarrow\overrightarrow{GA}=-3\overrightarrow{GG_0}\)
\(f'\left(x\right)=\dfrac{1}{cos^2\left(x-\dfrac{2\pi}{3}\right)}\Rightarrow f'\left(0\right)=\dfrac{1}{cos^2\left(-\dfrac{2\pi}{3}\right)}=4\)
\(y'=\left(m-1\right)\cos2x\cdot2-2\cdot\sin x-2m=0\)
\(\Leftrightarrow\left(m-1\right)\left(1-2\sin^2x\right)-\sin x-m=0\)
\(\Leftrightarrow2\left(1-m\right)\sin^2x-\sin x-1=0\)
bạn tự làm nốt nha
a/ \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x^2-1}-2}{x-3}+\lim\limits_{x\rightarrow3}\dfrac{2-\sqrt[4]{1+5x}}{x-3}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x^2-1-8}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{16-1-5x}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4.\sqrt[3]{1+5x}+8\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{-5\left(x-3\right)}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4\sqrt[3]{1+5x}+8\right)}\)
\(=\dfrac{3+3}{\sqrt[3]{\left(3^2-1\right)^2}+2.\sqrt[3]{3^2-1}+4}-\dfrac{5}{\sqrt[4]{\left(1+5.3\right)^3}+2\sqrt[3]{\left(1+5.3\right)^2}+4.\sqrt[3]{1+5.3}+8}=\dfrac{11}{32}\)
\(\Rightarrow a^2+b^2=1145\)
40/
\(L=\lim\limits_{x\rightarrow0}\dfrac{af\left(x\right)+b^n-b^n}{f\left(x\right)\left[\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+....+b^{n-1}\right]}\)
\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+...+b^{n-1}}\)
\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{b^{n-1}+b^{n-1}++...+b^{n-1}}=\dfrac{a}{nb^{n-1}}\)
\(\left(cosx-sinx\right).sinx.cosx=cos.cos2x\)
\(\Leftrightarrow sinx.cos^2x-sin^2x.cosx=cos\left(1-2sin^2x\right)\)
\(\Leftrightarrow sinx.cos^2x=cosx-sin^2x.cosx\)
\(\Leftrightarrow sinx.cos^2x=cosx\left(1-sin^2x\right)\)
\(\Leftrightarrow sinx.cos^2x=cos^3x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sinx=cosx\end{matrix}\right.\)
Xét \(cos^2x=0\Leftrightarrow cosx=0\)\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\)
Xét \(sinx=cosx\) \(\Leftrightarrow sinx-cosx=0\) \(\Leftrightarrow\sqrt{2}.sin\left(x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)\(\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)(\(k\in Z\))
Vậy \(x=\dfrac{\pi}{4}+k\pi\) hoặc \(x=\dfrac{\pi}{2}+k\pi\) với \(k\in Z\)
`\lim (\sqrt(4n+3) -\sqrt(n+1))`
`=\lim \sqrtn (\sqrt(4+3/n)-\sqrt(1+1/n))`
`=+oo`
Vì `{(\limn=+oo),(\lim(\sqrt(4+3/n)-\sqrt(1+1/n))=1>0):}`
Trong mp đáy, qua B kẻ đường thẳng song song AC, lần lượt cắt DA và DC kéo dài tại E và F
\(\Rightarrow AC||\left(SEF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SEF\right)\right)=d\left(A;\left(SEF\right)\right)\)
Gọi I là giao điểm AC và BD
Theo định lý Talet: \(\dfrac{ID}{IB}=\dfrac{DC}{AB}=3\Rightarrow\dfrac{ID}{BD}=\dfrac{3}{4}\)
Cũng theo Talet: \(\dfrac{DA}{DE}=\dfrac{DI}{DB}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}DE\Rightarrow AE=\dfrac{1}{4}DE\)
\(\Rightarrow d\left(A;\left(SEF\right)\right)=\dfrac{1}{4}d\left(D;\left(SEF\right)\right)\)
Trong tam giác vuông EDF, kẻ \(DH\perp EF\) , trong tam giác vuông SDH, kẻ \(DK\perp SH\)
\(\Rightarrow DK\perp\left(SEF\right)\Rightarrow DK=d\left(D;\left(SEF\right)\right)\)
\(DE=\dfrac{4}{3}AD=\dfrac{4a}{3}\); \(DF=\dfrac{4}{3}DC=4a\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{5}{8a^2}\)
\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{DH^2}=\dfrac{1}{48a^2}+\dfrac{5}{8a^2}\Rightarrow DK=\dfrac{4a\sqrt{93}}{31}\)
\(\Rightarrow d\left(AC;SB\right)=\dfrac{1}{4}DK=\dfrac{a\sqrt{93}}{31}\)