K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2023

loading...  

21 tháng 11 2023

loading...  loading...  loading...  

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\left(2x+1\right)+2x+1-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{4x^2}{\sqrt{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\left(-\dfrac{4}{\sqrt{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-4}{1+1}+\dfrac{12}{1+1+1}=2\)

8 tháng 3 2021

undefined

NV
25 tháng 3 2021

\(\left\{{}\begin{matrix}\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\\\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}=0\end{matrix}\right.\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)

\(\Leftrightarrow\left(\overrightarrow{GG_0}+\overrightarrow{G_0A}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0B}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0C}\right)+\left(\overrightarrow{GG_0}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)

\(\Leftrightarrow4\overrightarrow{GG_0}+\overrightarrow{G_0A}+\left(\overrightarrow{G_0B}+\overrightarrow{G_0C}+\overrightarrow{G_0D}\right)=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AG_0}=4\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GG_0}=4\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{AG}=3\overrightarrow{GG_0}\)

\(\Rightarrow\overrightarrow{GA}=-3\overrightarrow{GG_0}\)

NV
10 tháng 5 2021

\(f'\left(x\right)=\dfrac{1}{cos^2\left(x-\dfrac{2\pi}{3}\right)}\Rightarrow f'\left(0\right)=\dfrac{1}{cos^2\left(-\dfrac{2\pi}{3}\right)}=4\)

29 tháng 3 2021

\(y'=\left(m-1\right)\cos2x\cdot2-2\cdot\sin x-2m=0\)

\(\Leftrightarrow\left(m-1\right)\left(1-2\sin^2x\right)-\sin x-m=0\)

\(\Leftrightarrow2\left(1-m\right)\sin^2x-\sin x-1=0\)

bạn tự làm nốt nha

 

30 tháng 3 2021

Cảm ơn bạn nha

9 tháng 3 2021

a/ \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{x^2-1}-2}{x-3}+\lim\limits_{x\rightarrow3}\dfrac{2-\sqrt[4]{1+5x}}{x-3}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x^2-1-8}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{16-1-5x}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4.\sqrt[3]{1+5x}+8\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(\sqrt[3]{\left(x^2-1\right)^2}+2.\sqrt[3]{x^2-1}+4\right)}+\lim\limits_{x\rightarrow3}\dfrac{-5\left(x-3\right)}{\left(x-3\right)\left(\sqrt[4]{\left(1+5x\right)^3}+2\sqrt[3]{\left(1+5x\right)^2}+4\sqrt[3]{1+5x}+8\right)}\)

\(=\dfrac{3+3}{\sqrt[3]{\left(3^2-1\right)^2}+2.\sqrt[3]{3^2-1}+4}-\dfrac{5}{\sqrt[4]{\left(1+5.3\right)^3}+2\sqrt[3]{\left(1+5.3\right)^2}+4.\sqrt[3]{1+5.3}+8}=\dfrac{11}{32}\)

\(\Rightarrow a^2+b^2=1145\)

9 tháng 3 2021

40/ 

\(L=\lim\limits_{x\rightarrow0}\dfrac{af\left(x\right)+b^n-b^n}{f\left(x\right)\left[\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+....+b^{n-1}\right]}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-1}}+b.\sqrt[n]{\left(af\left(x\right)+b^n\right)^{n-2}}+...+b^{n-1}}\)

\(L=\lim\limits_{x\rightarrow0}\dfrac{a}{b^{n-1}+b^{n-1}++...+b^{n-1}}=\dfrac{a}{nb^{n-1}}\)

 

27 tháng 5 2021

\(\left(cosx-sinx\right).sinx.cosx=cos.cos2x\)

\(\Leftrightarrow sinx.cos^2x-sin^2x.cosx=cos\left(1-2sin^2x\right)\)

\(\Leftrightarrow sinx.cos^2x=cosx-sin^2x.cosx\)

\(\Leftrightarrow sinx.cos^2x=cosx\left(1-sin^2x\right)\)

\(\Leftrightarrow sinx.cos^2x=cos^3x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=0\\sinx=cosx\end{matrix}\right.\)

Xét \(cos^2x=0\Leftrightarrow cosx=0\)\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\)

Xét \(sinx=cosx\) \(\Leftrightarrow sinx-cosx=0\) \(\Leftrightarrow\sqrt{2}.sin\left(x-\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)\(\left(k\in Z\right)\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)(\(k\in Z\))

Vậy \(x=\dfrac{\pi}{4}+k\pi\) hoặc \(x=\dfrac{\pi}{2}+k\pi\) với \(k\in Z\)

 

31 tháng 7 2021

`\lim (\sqrt(4n+3) -\sqrt(n+1))`

`=\lim \sqrtn (\sqrt(4+3/n)-\sqrt(1+1/n))`
`=+oo`
Vì `{(\limn=+oo),(\lim(\sqrt(4+3/n)-\sqrt(1+1/n))=1>0):}`

NV
2 tháng 5 2021

Trong mp đáy, qua B kẻ đường thẳng song song AC, lần lượt cắt DA và DC kéo dài tại E và F

\(\Rightarrow AC||\left(SEF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SEF\right)\right)=d\left(A;\left(SEF\right)\right)\)

Gọi I là giao điểm AC và BD

Theo định lý Talet: \(\dfrac{ID}{IB}=\dfrac{DC}{AB}=3\Rightarrow\dfrac{ID}{BD}=\dfrac{3}{4}\)

Cũng theo Talet: \(\dfrac{DA}{DE}=\dfrac{DI}{DB}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}DE\Rightarrow AE=\dfrac{1}{4}DE\)

\(\Rightarrow d\left(A;\left(SEF\right)\right)=\dfrac{1}{4}d\left(D;\left(SEF\right)\right)\)

Trong tam giác vuông EDF, kẻ \(DH\perp EF\) , trong tam giác vuông SDH, kẻ \(DK\perp SH\)

\(\Rightarrow DK\perp\left(SEF\right)\Rightarrow DK=d\left(D;\left(SEF\right)\right)\)

\(DE=\dfrac{4}{3}AD=\dfrac{4a}{3}\)\(DF=\dfrac{4}{3}DC=4a\)

\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{5}{8a^2}\)

\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{DH^2}=\dfrac{1}{48a^2}+\dfrac{5}{8a^2}\Rightarrow DK=\dfrac{4a\sqrt{93}}{31}\)

\(\Rightarrow d\left(AC;SB\right)=\dfrac{1}{4}DK=\dfrac{a\sqrt{93}}{31}\)