K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có : (x-y)^2 >= 0 

<=> x^2-2xy+y^2>=0

<=> x^2+y^2 >= 2xy = 2.5 = 10 > 9,999

=> x^2+y^2 >= 9,999

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=10>9,999\)

16 tháng 9 2023

khó thế

16 tháng 9 2023

P = x(x - y) - x + y2(x - y) - y2 + 5

P = x - x + y- y2 + 5

P = 5
 

Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015

Q = 5 - 2015

Q = -2010

26 tháng 11 2016

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

26 tháng 11 2016

mk chua hok den nen ko co bit lam

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

27 tháng 8 2020

Sửa: Áp dụng chứng minh \(x^2+y^2>9\)

Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )

Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)

\(\Rightarrow x^2+y^2>9\)( đpcm )

23 tháng 10 2023

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

23 tháng 10 2023

đúng đó