1.2+2.3+3.4+...19.20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng : A=1.2+2.3+3.4+..+19.20
3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 19.20.21
3A = 19.20.21
A = \(\frac{19.20.21}{3}=3990\)
Tính tổng : A=1.2+2.3+3.4+..+19.20
3a=1.2.3-1.2.3.+2.3.4-2.3.4+......+19.20.21
3a=19.20.21
a=19.20.21:3=3990
\(M=1\cdot2+2\cdot3+3\cdot4+...+19\cdot20=\)
\(3\times M=1\cdot2\cdot3+2\cdot3\cdot3+....+19\cdot20\cdot3=\)
\(3\times M=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+19\cdot20\cdot\left(21-18\right)=\)
\(3\times M=1\cdot2\cdot3+2\cdot3\cdot4+...+19\cdot20\cdot21-1\cdot2\cdot3-...-18\cdot19\cdot20=\)
\(3\times M=19\cdot20\cdot21\)
\(M=\frac{19\cdot20\cdot21}{3}\)
\(M=2660\)
D=1.2+2.3+3.4+...+19.20
=>3D=1.2.3+2.3.3+3.4.3+...+19.20
=1.2.3+2.3(4-1)+3.4(5-2)+...+19.20(21-18)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
=>3D=1.2.3+2.3.3+3.4.3+...+19.20
=1.2.3+2.3(4-1)+3.4(5-2)+...+19.20(21-18)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
=19.20.21=7980
=>D=7980:3=2660
Vậy D=2660
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(\Rightarrow A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\left(1-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\frac{19}{20}\)
\(\Rightarrow A=\frac{19}{10}\)
2.(1/1.2+1/2.3+.....+1/18.19+1/19.20)
2.(1/1-1/2+1/2-1/3+......+1/19-1/20)
2.(1/1-1/20)= 2.19/20=19/10
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\frac{19}{20}\div x=\frac{9}{10}\)
\(\Leftrightarrow x=\frac{19}{18}\)
Sửa đề : \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right):x=\frac{9}{10}\)
\(\Leftrightarrow VT=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{20}\right)=\frac{9}{10}x\Leftrightarrow\frac{19}{20}=\frac{9}{10}x\)
\(\Leftrightarrow\frac{19}{20}=\frac{18x}{20}\) Khử mẫu ta đc : \(\Leftrightarrow18x=19\Leftrightarrow x=\frac{19}{18}\)
Ta có:
S=1.2+2.3+3.4+...+19.20
3S=1.2.3+2.3.(4-1)+...+19.20.(21-18)
3S=1.2.3+2.3.4-2.3.1+...+19.20.21-18.19.20
3S=19.20.21=> S=\(\frac{19.20.21}{3}\)= 2660.
S = 1.2 + 2.3 + ... + 19.20
3S = 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 19.20.(21 - 18)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 19.20.21 - 18.19.20
3S = (1.2.3 + 2.3.4 +...+ 19.20.21) - (0.1.2 + 1.2.3 +...+ 18.19.20)
3S = 19.20.21 - 0.1.2
3S = 19.20.21
S = \(\frac{19.20.21}{3}\)
S = 2660
A x 3 = 1.2.3 + 2.3.3 + ...+ 19.20.3
A x 3 = 1.2.( 3 - 1) + 2.3.(4 - 1) + ...+ 19.20.( 21-18)
A x 3 = ( 1.2.3 + 2.3.4 + ....+ 19.20.21) - ( 0.1.2 + 1.2.3 + ....+ 18.19.20)
=> A x 3 = 19 x 20 x 21 = 7890
\(3A=1.2.3+2.3.3+....+19.20.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+....+19.20\left(21-18\right)\)
\(3A=1.2.3-1.2.0+2.3.4-2.3.1+....+19.20.21-19.20.18\)
ta có thể thấy 1.2.3 = 2.3.1 và những con số khác cũng vậy
\(\Rightarrow3A=19.20.21\)
mink nghĩ vậy bạn ạ, sai đừng trách mink nha
Đặt \(A=1.2+2.3+3.4+...+19.20\)
Ta có: \(A=1.2+2.3+3.4+...+19.20\)
\(3A=1.2.3+2.3.3+3.4.3+...+19.20.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-1\right)+...+19.20.\left(21-1\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20\)
\(3A=19.20.21\)
\(A=19.20.7\)
\(A=2660\)
\(1\cdot2+2\cdot3+...+19\cdot20=\frac{1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+...+19\cdot20\cdot\left(21-17\right)}{3}\)
\(=\frac{1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+19\cdot20\cdot21-18\cdot19\cdot20}{3}\)\(=\frac{19\cdot20\cdot21}{3}=2660\)