Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(\Rightarrow A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\)
\(\Rightarrow A=\left(t+y^2\right)\left(t-y^2\right)+y^4=t^2-y^4+y^4\)
\(=t^2=\left(x^2+5xy+5y^2\right)^2\)là số chính phương ( đpcm )
\(A=\left(x^2+y^2+z^2\right)\left[\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\) là một số chính phương (đpcm)
Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)
Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)
Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y)
= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)
= \(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y - 3\(xy^2\)
= \(x^3\) + y3
b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\))
= (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)
= \(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)
= \(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3
mình mới lớp 6