K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1

Dạng này lâu quá quên cách làm rồi, thử vài cách xem cái nào tối ưu:

Sử dụng tam thức bậc 2:

Hàm xác định trên R khi:

\(2sin^2x-m.sinx+1>0;\forall x\in R\)

Đặt \(sinx=t\in\left[-1;1\right]\)

\(\Rightarrow f\left(t\right)=2t^2-m.t+1>0;\forall t\in\left[-1;1\right]\)

\(\Delta=m^2-8\)

TH1: \(\Delta< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)

Khi đó \(f\left(t\right)>0;\forall t\in R\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}=\dfrac{m}{4}\notin\left[-1;1\right]\end{matrix}\right.\)  \(\Rightarrow\) ko có m thỏa mãn

TH3:  \(\left\{{}\begin{matrix}\Delta>0\\t_1< t_2< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(-1\right)=m+3>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

TH4: \(\left\{{}\begin{matrix}\Delta>0\\1< t_1< t_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(1\right)=3-m>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Vậy \(-2\sqrt{2}< m< 2\sqrt{2}\)

 

NV
9 tháng 1

- Sử dụng hẳng đẳng thức:

\(2sin^2x-m.sinx+1>0\)

\(\Leftrightarrow16sin^2x-8m.sinx+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2-m^2+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2>m^2-8\) (1)

TH1: \(m^2-8< 0\Rightarrow\) BPT luôn đúng

TH2: \(m^2-8\ge0\), khi đó (1) tương đương:

\(\left[{}\begin{matrix}4sinx-m>\sqrt{m^2-8}\\4sinx-m< -\sqrt{m^2-8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4sinx>m+\sqrt{m^2-8}\\4sinx< m-\sqrt{m^2-8}\end{matrix}\right.\)

Do \(sinx\in\left[-1;1\right]\) nên điều này đúng vói mọi x khi và chỉ khi:

\(\left[{}\begin{matrix}-4>m+\sqrt{m^2-8}\\4< m-\sqrt{m^2-8}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}-1>\dfrac{m+\sqrt{m^2-8}}{4}\\1< \dfrac{m-\sqrt{m^2-8}}{4}\end{matrix}\right.\)(2)

Giải 2 cái này ra là được.

À, đến đây phát hiện ra 1 điều, thực chất \(\dfrac{m\pm\sqrt{m^2-8}}{4}\) chính là 2 nghiệm \(t_1;t_2\) của pt

\(2t^2-mt+1=0\), và 2 BPT (2) kia cũng chính là \(\left[{}\begin{matrix}t_1< t_2< -1\\1< t_1< t_2\end{matrix}\right.\) của cách 1

Vậy về cơ bản 2 cách này giống nhau về phần lõi, chỉ khác về cách trình bày

23 tháng 9 2021

Hàm số xác định trên \(R\Leftrightarrow\sin^2x-2\sin x+m-1\ge0,\forall x\in R\left(\text{*}\right)\)

Đặt \(x=t\)

Ta có \(-1\le\sin x\le1\Rightarrow-1\le t\le1\)

\(\left(\text{*}\right)\Leftrightarrow t^2-2t+m-1\ge0,\forall t\in\left[-1;1\right]\\ \Leftrightarrow t^2-2t+1+m-2\ge0\\ \Leftrightarrow\left(t-1\right)^2\ge2-m,\forall t\in\left[-1;1\right]\\ \Leftrightarrow2-m\le Min\left(t-1\right)^2\)

Với \(t\in\left[-1;1\right]\Leftrightarrow0\le\left(t-1\right)^2\le4\)

\(\Leftrightarrow2-m\le0\\ \Leftrightarrow m\ge2\)

Vậy \(m\ge2\) thì hàm số xác định trên \(R\)

23 tháng 9 2021

tới bước 2-m <= min (t-1)^2 là hết rồi ạ?

a:

\(0< =\left|cos3x\right|< =1\)

=>\(0< =2\left|cos3x\right|< =2\)

Để hàm số xác định trên R thì \(2\left|cos3x\right|-m< >0\) với mọi x

=>\(m< >2\left|cos3x\right|\) với mọi x

=>\(m\in R\backslash\left[0;2\right]\)

b: \(cosx\cdot cos3x=\dfrac{1}{2}\cdot\left[cos\left(x+3x\right)+cos\left(x-3x\right)\right]\)

\(=\dfrac{1}{2}\left[cos4x+cos2x\right]\)

\(=\dfrac{1}{2}\left[2\cdot cos^22x-1+cos2x\right]\)

\(=cos^22x+\dfrac{1}{2}\cdot cos2x-\dfrac{1}{2}\)

\(=cos^22x+2\cdot cos2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\)

\(=\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}\)

\(-\dfrac{3}{4}< =cos2x+\dfrac{1}{4}< =\dfrac{5}{4}\)

=>\(0< =\left(cos2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)

=>\(-\dfrac{9}{16}< =\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}< =1\)

Để hàm số xác định trên R thì \(m< >cosx\cdot cos3x\)

=>\(m\in R\backslash\left[-\dfrac{9}{16};1\right]\)

NV
17 tháng 9 2021

Hàm xác định trên R khi với mọi x ta có:

\(2sin3x+2cos3x-m>0\)

\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)

\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)

\(\Rightarrow m< -2\sqrt{2}\)

5 tháng 10 2021

1.

Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

5 tháng 10 2021

2.

Đặt \(t=cosx\left(t\in\left[-1;1\right]\right)\)

Hàm số xác định trên R khi:

\(m-1+2cosx\ge0\forall x\in R\)

\(\Leftrightarrow m\ge f\left(t\right)=1-2t\forall x\in R\)

\(\Leftrightarrow m\ge maxf\left(t\right)=f\left(-1\right)=3\)

Vậy \(m\ge3\)

12 tháng 11 2023

a: TXĐ: D=R\{-1}

\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)

=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)

=>1-m<0

=>m>1

b: TXĐ: D=R\{m}

\(y=\dfrac{2x-3m}{x-m}\)

=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)

\(=\dfrac{m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m}{\left(x-m\right)^2}>0\)

=>m>0

NV
8 tháng 1

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

8 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/tim-m-de-ham-so-sqrtsin4xcos4x4sinxcosxm-5-xac-dinh-tren-r.8744969085814

19 tháng 8 2023

1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.

17 tháng 9 2021

a, \(y=2sin^2x-cos2x=1-2cos2x\)

Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)

NV
15 tháng 7 2021

a.

\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)