K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

\(0< =\left|cos3x\right|< =1\)

=>\(0< =2\left|cos3x\right|< =2\)

Để hàm số xác định trên R thì \(2\left|cos3x\right|-m< >0\) với mọi x

=>\(m< >2\left|cos3x\right|\) với mọi x

=>\(m\in R\backslash\left[0;2\right]\)

b: \(cosx\cdot cos3x=\dfrac{1}{2}\cdot\left[cos\left(x+3x\right)+cos\left(x-3x\right)\right]\)

\(=\dfrac{1}{2}\left[cos4x+cos2x\right]\)

\(=\dfrac{1}{2}\left[2\cdot cos^22x-1+cos2x\right]\)

\(=cos^22x+\dfrac{1}{2}\cdot cos2x-\dfrac{1}{2}\)

\(=cos^22x+2\cdot cos2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\)

\(=\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}\)

\(-\dfrac{3}{4}< =cos2x+\dfrac{1}{4}< =\dfrac{5}{4}\)

=>\(0< =\left(cos2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)

=>\(-\dfrac{9}{16}< =\left(cos2x+\dfrac{1}{4}\right)^2-\dfrac{9}{16}< =1\)

Để hàm số xác định trên R thì \(m< >cosx\cdot cos3x\)

=>\(m\in R\backslash\left[-\dfrac{9}{16};1\right]\)

NV
8 tháng 1

Ủa sao xài hoành độ đỉnh ở đây được nhỉ, phải xài nghiệm (đúng hơn là lợi dụng quy tắc dấu tam thức bậc 2 "trong khác - ngoài cùng")

Đây, ví dụ 1 trường hợp cho em (bài này ở trên đã đưa dấu a>0 theo thói quen). 2 đường màu đỏ là khoảng \(\left(-1;\dfrac{1}{2}\right)\), rõ ràng đỉnh parabol nằm trong khoảng đó nhưng trên khoảng \(\left(-1;\dfrac{1}{2}\right)\) hàm vẫn có 1 đoạn nhận giá trị dương (tương ứng với đoạn BC)

loading...

Cách làm đúng ở đây là cần sử dụng quy tắc tam thức bậc 2  (hoặc 1 số pp khác nhưng ko thể là hoành độ đỉnh). Lợi dụng quy tắc tam thức bậc 2: nếu pt bậc 2 có 2 nghiệm \(x_1;x_2\) thì \(a.f\left(x\right)< 0\) với \(x\in\left(x_1;x_2\right)\) và \(a.f\left(x\right)>0\) với \(x\notin\left(x_1;x_2\right)\).

Do đó để  \(f\left(x\right)< 0\) ; \(\forall x\in\left(p;q\right)\) nào đó (khi a dương), đồng nghĩa khi đó p và q phải nằm giữa 2 nghiệm, hay \(f\left(p\right)\) và \(f\left(q\right)\) đều âm.

NV
8 tháng 1

Hàm xác định trên khoảng đã cho khi và chỉ khi:

\(4\left(sin^6x+cos^6x\right)-6m.sin2x+2-m^2\ge0;\forall x\in\left(...\right)\)

\(\Leftrightarrow4\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]-6m.sin2x+2-m^2\ge0;\forall x\in...\)

\(\Leftrightarrow-3sin^22x-6m.sin2x-m^2+6\ge0\)

Đặt \(sin2x=t\Rightarrow t\in[-1;\dfrac{1}{2})\)

\(\Rightarrow f\left(t\right)=3t^2+6mt+m^2-6\le0\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}f\left(-1\right)\le0\\f\left(\dfrac{1}{2}\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m-3\le0\\m^2+3m-\dfrac{21}{4}< 0\end{matrix}\right.\)

Ủa biến đổi có sai ở đâu ko mà BPT cuối nhìn nghiệm xấu vậy

NV
9 tháng 1

Dạng này lâu quá quên cách làm rồi, thử vài cách xem cái nào tối ưu:

Sử dụng tam thức bậc 2:

Hàm xác định trên R khi:

\(2sin^2x-m.sinx+1>0;\forall x\in R\)

Đặt \(sinx=t\in\left[-1;1\right]\)

\(\Rightarrow f\left(t\right)=2t^2-m.t+1>0;\forall t\in\left[-1;1\right]\)

\(\Delta=m^2-8\)

TH1: \(\Delta< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)

Khi đó \(f\left(t\right)>0;\forall t\in R\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}=\dfrac{m}{4}\notin\left[-1;1\right]\end{matrix}\right.\)  \(\Rightarrow\) ko có m thỏa mãn

TH3:  \(\left\{{}\begin{matrix}\Delta>0\\t_1< t_2< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(-1\right)=m+3>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

TH4: \(\left\{{}\begin{matrix}\Delta>0\\1< t_1< t_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(1\right)=3-m>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Vậy \(-2\sqrt{2}< m< 2\sqrt{2}\)

 

NV
9 tháng 1

- Sử dụng hẳng đẳng thức:

\(2sin^2x-m.sinx+1>0\)

\(\Leftrightarrow16sin^2x-8m.sinx+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2-m^2+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2>m^2-8\) (1)

TH1: \(m^2-8< 0\Rightarrow\) BPT luôn đúng

TH2: \(m^2-8\ge0\), khi đó (1) tương đương:

\(\left[{}\begin{matrix}4sinx-m>\sqrt{m^2-8}\\4sinx-m< -\sqrt{m^2-8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4sinx>m+\sqrt{m^2-8}\\4sinx< m-\sqrt{m^2-8}\end{matrix}\right.\)

Do \(sinx\in\left[-1;1\right]\) nên điều này đúng vói mọi x khi và chỉ khi:

\(\left[{}\begin{matrix}-4>m+\sqrt{m^2-8}\\4< m-\sqrt{m^2-8}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}-1>\dfrac{m+\sqrt{m^2-8}}{4}\\1< \dfrac{m-\sqrt{m^2-8}}{4}\end{matrix}\right.\)(2)

Giải 2 cái này ra là được.

À, đến đây phát hiện ra 1 điều, thực chất \(\dfrac{m\pm\sqrt{m^2-8}}{4}\) chính là 2 nghiệm \(t_1;t_2\) của pt

\(2t^2-mt+1=0\), và 2 BPT (2) kia cũng chính là \(\left[{}\begin{matrix}t_1< t_2< -1\\1< t_1< t_2\end{matrix}\right.\) của cách 1

Vậy về cơ bản 2 cách này giống nhau về phần lõi, chỉ khác về cách trình bày

11 tháng 11 2023

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

NV
9 tháng 1

\(2sinx+5cosx-13< 0;\forall x\)

\(\Rightarrow\) Hàm xác định trên R khi và chỉ khi:

\(2m.sinx+\left(2m-1\right)cosx-m< 0\) ;\(\forall x\) 

\(\Leftrightarrow2m.sinx+\left(2m-1\right).cosx< m\)\(\forall x\)

\(\Rightarrow\dfrac{m}{\sqrt{\left(2m\right)^2+\left(2m-1\right)^2}}>1\)

\(\Rightarrow m\in\varnothing\)

9 tháng 1

Anh dùng bunhia ạ anh, ở dòng suy ra anh làm như nào vậy ạ 

NV
17 tháng 9 2021

Hàm xác định trên R khi với mọi x ta có:

\(2sin3x+2cos3x-m>0\)

\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)

\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)

\(\Rightarrow m< -2\sqrt{2}\)

NV
8 tháng 1

Hàm số xác định trên R khi và chỉ khi:

\(sin^2x+\left(2m-3\right)cosx+3m-2>0;\forall x\in R\)

\(\Leftrightarrow-cos^2x+\left(2m-3\right)cosx+3m-1>0\)

\(\Leftrightarrow t^2-\left(2m-3\right)t-3m+1< 0;\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t^2+3t+1< m\left(2t+3\right)\)

\(\Leftrightarrow\dfrac{t^2+3t+1}{2t+3}< m\) (do \(2t+3>0;\forall t\in\left[-1;1\right]\))

\(\Leftrightarrow m>\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}\)

Ta có: \(\dfrac{t^2+3t+1}{2t+3}=\dfrac{t^2+t-2+2t+3}{2t+3}=\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}+1\)

Do \(-1\le t\le1\Rightarrow\dfrac{\left(t-1\right)\left(t+2\right)}{2t+3}\le0\)

\(\Rightarrow\max\limits_{\left[-1;1\right]}\dfrac{t^2+3t+1}{2t+3}=1\)

\(\Rightarrow m>1\)

8 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/tim-m-de-ham-so-sqrtsin4xcos4x4sinxcosxm-5-xac-dinh-tren-r.8744969085814

NV
12 tháng 1

\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\) 

Hàm xác định trên R khi:

TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

12 tháng 1

Anh ơi! Anh giúp em câu này ạ anh! Anh cho em xin phương pháp xác định điểm M và N theo hình chiếu song song với ạ (tổng quát cho mọi bài ạ anh.), em cũng chưa rõ phương pháp làm, nhìn hình mò một số đường để ra. 

https://hoc24.vn/cau-hoi/cho-hinh-hop-abcdabcd-xac-dinh-diem-m-thuoc-ac-n-thuoc-bd-sao-cho-mn-di-voi-i-la-trung-diem-cua-aa-tinh-mamc.8751928472360