Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x,y,z tỉ lệ với 4,5,2 => \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{5z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{5z}{10}=\frac{x-5z}{4-10}=\frac{12}{-6}=-2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{5}=-2\\\frac{z}{2}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-2.4\\y=-2.5\\z=-2.2\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-10\\z=-4\end{cases}}}\)
TA CO X,Y,Z LAN LUOT TY LE VOI 4,5,2
SUY RA X/4=Y/5=Z/2
TU X/4=Z/2
=>X=4/2Z
THAY VÀO TA ĐƯỢC : 4/2Z-5Z=12
=>-3Z=12
=>Z=-4
=>X=-4.4/2=-8
TU DAY TA LAI CO :Y/5=-8/4=-2
=>Y=-2.5=-10
VAY X=-8 VA Y=-10 VAZ=-4
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18
Gọi các tỉ lệ là a;b;c . Theo đề bài ra,ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}a=2\cdot4=8\\b=2\cdot5=10\\c=2\cdot6=12\end{cases}}\)
Vậy ___
Gọi các tỉ lệ là a;b;c . Theo đề bài ra,ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot3=15\\b=5\cdot4=20\\c=5\cdot5=25\end{cases}}\)
Vậy ___
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
Theo đề bài ta có:
\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}\) và \(4x-8y+5z=-56\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2,5}=\frac{y}{4}=\frac{z}{1,6}=\frac{4x-8y+5z}{4\cdot2,5-8\cdot4+5\cdot1,6}=\frac{-56}{-14}=4\)
=>\(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)
Theo bài ta có:
\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) và 4x - 8y + 5z = -56
Ta có: \(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) và
4x - 8y + 5z = -56
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2,5}\) = \(\frac{y}{4}\) = \(\frac{z}{1,6}\) = \(\frac{4x}{10}\) = \(\frac{8y}{32}\) = \(\frac{5z}{8}\) = \(\frac{4x-8y+5z}{10-32+8}\)= \(\frac{-56}{-14}\) = 4
Từ: \(\frac{x}{2,5}\) = 4 => x = 10
\(\frac{y}{4}\) = 4 => y = 16
\(\frac{z}{1,6}\) = 4 => z = 6,4
Vậy => \(\begin{cases}x=10\\y=16\\z=6,4\end{cases}\)
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
a) Ta có : 7x = 5z => x/5 = z/7 => x/15 = z/21 (1)
x/3 = y/2 => x/15 = y/10 (2)
Từ (1) và (2) suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau
Ta có : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)=> \(\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-2}{-12}=\frac{1}{6}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{1}{6}\\\frac{y}{10}=\frac{1}{6}\\\frac{z}{21}=\frac{1}{6}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{1}{6}.15=\frac{15}{6}\\y=\frac{1}{6}.10=\frac{5}{3}\\z=\frac{1}{6}.21=\frac{7}{2}\end{cases}}\)
Vậy ...
Bài làm:
Theo đề ta có:
z = k . y tức là z = 0,8 . y
y = h . x tức là y = 5 . x
Ta được quyền suy ra:
z = h . k . x => 1/hk . z tức là 5 . 0,8 . x => 1/5 . 0,8 = 1/4
Vậy z tỉ lệ thuận với x
Theo hệ số tỉ lệ 1/hk (hay 1/4)
bài này hơi nâng cao, mk chỉ làm như vậy thôi nhưng ko biết đúng hay sai đâu nha!
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-5z}{4-5\cdot6}=\dfrac{12}{4-30}=\dfrac{-12}{26}=\dfrac{-6}{13}\)
=>x=-24/13; y=-30/13; z=-36/13
Ta có
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-5z}{4-5.6}=\dfrac{12}{-26}=-\dfrac{6}{13}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{13}\times4=-\dfrac{24}{13}\\y=-\dfrac{6}{13}\times5=-\dfrac{30}{13}\\z=-\dfrac{6}{13}\times6=-\dfrac{36}{13}\end{matrix}\right.\)