Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : 1/a - 1/b = 2/195 (1)
Lại có : a và b là 2 số tự nhiên liên tiếp và a < b
=> b = a + 2 (2)
Thay (2) vào 1 ta có :
\(\frac{1}{a}-\frac{1}{a+2}=\frac{a+2-a}{a\times\left(a+2\right)}=\frac{2}{a\times\left(a+2\right)}\)
Vì 2 = 2
=> \(a\times\left(a+2\right)=195\)
=> \(a\times\left(a+2\right)=13\times15\)
=> \(a=13\)và \(a+2=15\)(3)
Lại có a + 2 = b
=> b = 15
Vậy a = 13 ; b = 15
Giải
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{195}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{\:b-a}{a×b}=\frac{2}{195}\)
Ta có:\(\)b - a = 2
b × a = 195
Nếu đoán mò thì chỉ có số A = 13
và B = 15
Vì 13, 15 là hai số lẻ liên tiếp nhân nhau bằng 195.
Theo đề bài, ta có:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{195}\) (1)
Lại có: a và b là hai số tự nhiên liên tiếp và a < b
\(\Rightarrow b=a+2\) (2)
Thay (2) vào (1) ta có:
\(\frac{1}{a}-\frac{1}{a+2}=\frac{a+2-a}{a.\left(a+2\right)}=\frac{2}{a.\left(a+2\right)}\)
Vì 2 = 2
\(\Rightarrow a.\left(a+2\right)=195\)
\(\Rightarrow a.\left(a+2\right)=13.15\)
\(\Rightarrow a=13\)và \(a+2=15\) (3)
Lại có: \(a+2=b\)
\(\Rightarrow b=15\)
Vậy \(a=13;b=15\)
b\(\times\)a = 195 → a = \(\dfrac{195}{b}\)
Thay a = \(\dfrac{195}{b}\) vào phương trình b - a = 2, ta có:
b - \(\dfrac{195}{b}\) = 2
⇔ b2 - 195 = 2b
⇔ b2 - 2b +1 = 196
⇔ ( b - 1 )2 = 142
⇔ b - 1 = 14
⇔ b = 15 (Thoả mãn điều kiện)
→ a = b - 2 = 15 - 2 = 13 (Thoả mãn điều kiện)
Vậy (a;b) = (13;15)
\(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}=\frac{2}{195}\)
Phân tích 195 ra thừa số ngyên tố 195=3.5.13. Do đó Ư(195)={1;3;5;13;15;39;65;195}
Trong các ước của 195 thì 15 và 13 có hiệu là 2
Do đó a=15, b=13