Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik có cách này
nếu bạn hay quyên thế thì ghi những bài toán đáng nhớ vào 1 quyển sổ
lúc nào quyên thì dở ra
hiệu quả hơn đó !~
Bây giờ mình mới thấy dễ:
Ta có: \(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\times2000}{\left(2000^{2015}-1\right)\times2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}\)> \(\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B
so sánh A = 2000^2014/2000^2015 -1 và B = 2000^2015/ 2000^ 2016 -1 ta được A ............. B
Câu hỏi tương tự Đọc thêmToán lớp 6
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
Ta có \(A=2015^{2001}=2015.2015^{2000}\)
\(B=2014^{2000}+2014^{2001}=2014^{2000}.\left(1+2014\right)\)\(=2015.2014^{2000}\)
Ta thấy \(2014^{2000}< 2015^{2000}\Rightarrow2015.2014^{2000}< 2015.2015^{2000}\)
\(\Rightarrow2015^{2001}>2014^{2000}+2014^{2001}\)
Vậy A>B
\(2015^{2001}=2015^{2000}.2015;2014^{2000}+2014^{2001}=2014^{2000}.\left(2014+1\right)=2014.2015\)
Ta thấy 20152000.2015 > 20142000.2014
Ta có:
\(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\cdot2000}{\left(2000^{2015}-1\right)\cdot2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}>\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Xét A trước ta có
2000A=2000.2000^2014/2000^2015-1
2000A=2000^2015-1+1999/2000^2015-1
2000A=1+1999/2000^2015-1
2000B=2000^2015.2000/2000^2016-1
2000B=2000^2016-1+1999/2000^2016-1
2000B=1+1999/2000^2016-1
Ta thấy 2000A>2000B
suy ra A>B