K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

Ta có :

 

+) \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)

+) \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)

ta thấy :

\(\frac{1}{2003.2004}>\frac{1}{2004.2005}\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)

\(\Rightarrow\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)

8 tháng 1 2022

ông giải như này sao em hiểu 

11 tháng 1 2022

\(A=\dfrac{2003.2004-1}{2003.2004}=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

So sánh: \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)

\(\Rightarrow-\dfrac{1}{2003.2004}< -\dfrac{1}{2004.2005}\\ \Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\\ Hay.A< B\)

15 tháng 9 2017

a) A=\(\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2004}=1-\dfrac{1}{2003.2004}\)

B = \(\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)

\(\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)

Vậy A < B

b) \(\left(3X-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\left(3X-2^4\right).7^5=2.7^6.1\)

\(\left(3X-2^4\right).7^5=2.7^6\)

\(\left(3X-2^4\right).=2.7^6:7^5\)

\(3X-2^4=2.7\)

\(3X-16=14\)

\(3X=16+14=30\)

\(X=30:3=10\)

Vậy X = 10

15 tháng 9 2017

1/ \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\Leftrightarrow A< B\)

2/ \(\left(3x-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\Leftrightarrow\left(3x-2^4\right).7^5=2.7^6.1\)

\(\Leftrightarrow3x-2^4=2.7^6:7^5\)

\(\Leftrightarrow3x-2^4=2.7\)

\(\Leftrightarrow3x-16=14\)

\(\Leftrightarrow3x=30\)

\(\Leftrightarrow x=10\left(tm\right)\)

Vậy ..

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

a) Ta có: \(\dfrac{39}{-65}=\dfrac{-39}{65}=\dfrac{-39:13}{65:13}=\dfrac{-3}{5}\)

\(\dfrac{-3}{5}=\dfrac{-3}{5}\)

Do đó: \(\dfrac{-3}{5}=\dfrac{39}{-65}\)

b) Ta có: \(\dfrac{-9}{27}=\dfrac{-9:9}{27:9}=\dfrac{-1}{3}\)

\(\dfrac{-41}{123}=\dfrac{-41:41}{123:41}=\dfrac{-1}{3}\)

Do đó: \(\dfrac{-9}{27}=\dfrac{-41}{123}\)

c) Ta có: \(\dfrac{-3}{4}=\dfrac{-3\cdot5}{4\cdot5}=\dfrac{-15}{20}\)

\(\dfrac{4}{-5}=\dfrac{-4}{5}=\dfrac{-4\cdot4}{5\cdot4}=\dfrac{-16}{20}\)

mà \(\dfrac{-15}{20}>\dfrac{-16}{20}\)

nên \(\dfrac{-3}{4}>\dfrac{4}{-5}\)

d) Ta có: \(\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot7}{3\cdot7}=\dfrac{-14}{21}\)

\(\dfrac{-5}{7}=\dfrac{-5\cdot3}{7\cdot3}=\dfrac{-15}{21}\)

mà \(\dfrac{-14}{21}>\dfrac{-15}{21}\)

nên \(\dfrac{2}{-3}>\dfrac{-5}{7}\)

Giải:

a)Ta có:

C=1957/2007=1957+50-50/2007

                      =2007-50/2007

                      =2007/2007-50/2007

                      =1-50/2007

D=1935/1985=1935+50-50/1985

                      =1985-50/1985

                      =1985/1985-50/1985

                      =1-50/1985

Vì 50/2007<50/1985 nên -50/2007>-50/1985

⇒C>D

b)Ta có:

A=20162016+2/20162016-1

A=20162016-1+3/20162016-1

A=20162016-1/20162016-1+3/20162016-1

A=1+3/20162016-1

Tương tự: B=20162016/20162016-3

                 B=1+3/20162016-3

Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3

⇒A<B

Chúc bạn học tốt!

 

 

Làm tiếp:

c)Ta có:

M=102018+1/102019+1

10M=10.(102018+1)/202019+1

10M=102019+10/102019+1

10M=102019+1+9/102019+1

10M=102019+1/102019+1 + 9/102019+1

10M=1+9/102019+1

Tương tự:

N=102019+1/102020+1

10N=1+9/102020+1

Vì 9/102019+1>9/102020+1 nên 10M>10N

⇒M>N

Chúc bạn học tốt!

14 tháng 9 2023

(Sửa \(cn-bm\rightarrow cn-dm\))

Ta có :

\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)

\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)

\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)

\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)

\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)