K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

1, mình không ghi đề nha

A= \(\frac{1.1+1.1+1.1}{3+3.3+3.3+3}\)

A=\(\frac{1.3}{9.3}\)

A=\(\frac{1}{9}\)

5 tháng 4 2017

Cảm ơn bạn!

2 tháng 4 2016

Câu 1 dễ thôi. Bạn tính tử, rồi tính mẫu sao cho khi phân phối ở cả tử và mẫu đều có phần thừa số có thể rút gọn cho nhau. Giờ mik bận quá nên ko thể giải dầy đủ. Thông cảm nha...

Câu 2: Cũng ko khó lắm đâu:

S=\(\frac{1}{1}\) - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}\)+...+\(\frac{1}{n}\)-\(\frac{1}{n+3}\)

=1-\(\frac{1}{n+3}\)<1.

Vậy: S<1

Để làm dc bài sau, bạn nhớ giùm mik công thức: \(\frac{a}{b.\left(b+a\right)}\)=\(\frac{1}{b}\)-\(\frac{1}{b+a}\)

Câu 3:  Đặt \(A=\frac{2003.2004-1}{2003.2004}\), \(B=\frac{2004.2005-1}{2004.2005}\)ta có:

\(A=\frac{2003.2004}{2003.2004}\)-\(\frac{1}{2003.2004}\)=1-\(\frac{1}{2003.2004}\)

\(B=\frac{2004.2005}{2004.2005}\)-\(\frac{1}{2004.2005}\)=1-\(\frac{1}{2004.2005}\)

Vì 2003.2004<2004.2005=>\(\frac{1}{2003.2004}\)>\(\frac{1}{2004.2005}\)

=>1-\(\frac{1}{2003.2004}\)<1-\(\frac{1}{2004.2005}\)

Vậy:  \(\frac{2003.2004-1}{2003.2004}\)< \(\frac{2004.2005-1}{2004.2005}\)

Nhớ cho mik nha. Thanks

8 tháng 1 2022

Ta có :

 

+) \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)

+) \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)

ta thấy :

\(\frac{1}{2003.2004}>\frac{1}{2004.2005}\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)

\(\Rightarrow\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)

8 tháng 1 2022

ông giải như này sao em hiểu 

11 tháng 1 2022

\(A=\dfrac{2003.2004-1}{2003.2004}=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

So sánh: \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)

\(\Rightarrow-\dfrac{1}{2003.2004}< -\dfrac{1}{2004.2005}\\ \Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\\ Hay.A< B\)

2 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)

\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)

Vậy S < 1

15 tháng 9 2017

a) A=\(\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2004}=1-\dfrac{1}{2003.2004}\)

B = \(\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)

\(\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)

Vậy A < B

b) \(\left(3X-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\left(3X-2^4\right).7^5=2.7^6.1\)

\(\left(3X-2^4\right).7^5=2.7^6\)

\(\left(3X-2^4\right).=2.7^6:7^5\)

\(3X-2^4=2.7\)

\(3X-16=14\)

\(3X=16+14=30\)

\(X=30:3=10\)

Vậy X = 10

15 tháng 9 2017

1/ \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\Leftrightarrow A< B\)

2/ \(\left(3x-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\Leftrightarrow\left(3x-2^4\right).7^5=2.7^6.1\)

\(\Leftrightarrow3x-2^4=2.7^6:7^5\)

\(\Leftrightarrow3x-2^4=2.7\)

\(\Leftrightarrow3x-16=14\)

\(\Leftrightarrow3x=30\)

\(\Leftrightarrow x=10\left(tm\right)\)

Vậy ..