Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\)
Mặt khác : \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)\(\Rightarrow\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\ge\frac{3}{2}\)
Dự đoán \(MinL=\frac{3}{2}\)khi a = b = c
Ta cần chứng minh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{\left(a-b\right)+\left(c-a\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{a-b}{2\left(b+c\right)}-\frac{c-a}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2}\left(\frac{1}{a+b}-\frac{1}{b+c}\right)-\frac{c-a}{2}\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2}.\frac{c-a}{\left(a+b\right)\left(b+c\right)}-\frac{c-a}{2}.\frac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{\left(a-b\right)\left(c-a\right)\left(a+b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đúng do \(a\ge b\ge c>0\))
Đẳng thức xảy ra khi a = b = c
Bởi vì ta có tính chất:
`a>=b>0=>1/a<=1/b`
GTLN bởi vì có dấu `<=`
Ý bạn là sao nhỉ?
Theo mình hiểu thì bạn muốn biến 72 thành căn đúng không? Vậy thì bạn chỉ cần biểu diễn $72=\sqrt{72^2}=\sqrt{5184}$ thôi.
Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?
\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?
Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.
Với a;b;c;d dương:
Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)
Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?
thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)
còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa
và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.
- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3
x1 có thỏa mãn điều kiện nói trên
x2 không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1
`a(a+6)+10>0`
`<=>a^2+6a+10>0`
`<=>a^2+6a+9+1>0`
`<=>(a+3)^2+1>0` luôn đúng