K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2022

Giả sử \(\sqrt{2}\) là số hữu tỉ, khi đó \(\sqrt{2}=\dfrac{m}{n}\) với \(m,n\inℕ^∗\) và \(\left(m,n\right)=1\)

\(\Rightarrow2=\dfrac{m^2}{n^2}\Rightarrow m^2=2n^2\Rightarrow m^2⋮2\Rightarrow m⋮2\Rightarrow m=2k\left(k\inℕ\right)\) 

\(\Rightarrow\left(2k\right)^2=2n^2\Rightarrow4k^2=2n^2\Rightarrow2k^2=n^2\Rightarrow n^2⋮2\Rightarrow n⋮2\). Như vậy ta có m, n đều chia hết cho 2, trái với \(\left(m,n\right)=1\), vậy điều giả sử là vô lí. Do đó, \(\sqrt{2}\) là số vô tỉ.

 

2 tháng 9 2022

giả sử \(\sqrt{2}\) là một số hữu tỉ ⇔ \(\sqrt{2}\) = \(\dfrac{m}{n}\)với m,n ϵ N*

⇔ 2 =  \(\dfrac{m^2}{n^2}\) ⇔ m2=2n2 vì m,n ϵ N⇔ m2,n2 là các số chính phương 

⇔ 2 là một số chính phương vô lý vì một số chính phương không thể có tận cùng là 2. vậy điều giả sử là sai ⇔ \(\sqrt{2}\) là một số vô tỉ (đpcm)

2 tháng 10 2021

Giả sử căn 3 không phải số vô tỉ suy ra:

tồn tại số m và n  sao cho căn 3 = m/n   (m,n là nguyên tố cùng nhau)

khi đó  3n^2 = m^2

=> m chia hết 3, đặt m=3p ( p là số nguyên)

thay m = 3p ta có

3n^2 = 9p^2

n^2 = 3p^2

=> n chia hết cho 3

=> m và n cùng chia hết cho 3

mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau

=> căn 3 là số vô tỉ

18 tháng 9 2021

Giả sử \(\sqrt{3}\) là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
\(\dfrac{m}{n}=\sqrt{3}\left(1\right)\)
với \(\dfrac{m}{n}\) là phân số tối giản hay m và n có ước chung lớn nhất bằng 1
Khi đó từ \(\left(1\right)\Leftrightarrow m=n\sqrt{3}\Leftrightarrow m^2=3n^2\left(2\right)\)
Từ đó suy ra \(m^2\) chia hết cho 3 nên m phải chia hết cho 3\(\left(3\right)\)
Do đó tồn tại số nguyên k sao cho \(m=3k\) Thay vào \(\left(2\right)\) ta có thể suy ra \(n^2=3k^2\) hay \(n=\sqrt{3}k\)
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để \(\dfrac{m}{n}=\sqrt{3}\) Vậy \(\sqrt{3}\) không là số hữu tỉ \(\left(\sqrt{3}\notin Q\right)\)

18 tháng 9 2021

cảm ơn ạ

 

3 tháng 3 2017

Đáp án: D

Các bước giải bài toán trên đều đúng.

a, mệnh đề đúng 

b, mệnh đề sai 

c, mệnh đề đúng 

17 tháng 10 2017

Lời giải

Giả sử: \(\sqrt{2}\)\(\sqrt{3}\) là các số hữu tỉ

Khi đó: \(\left\{{}\begin{matrix}\sqrt{2}=\dfrac{a}{b}\\\sqrt{3}=\dfrac{x}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2}{b^2}=2\\\dfrac{x^2}{y^2}=3\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}a^2=2b^2\\x^2=3y^2\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}a^2⋮2\\x^2⋮3\end{matrix}\right.\)

Như vậy \(\left\{{}\begin{matrix}b^2⋮2\\y^2⋮3\end{matrix}\right.\) để có thể thỏa mãn điều kiện trên

Vậy \(\sqrt{2}\)\(\sqrt{3}\) là số vô tỉ

21 tháng 11 2017

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

25 tháng 7 2018

undefined

6 tháng 4 2019

cho \(\sqrt{2}\) là số vô tỉ, khi đó \(\sqrt{2}=\frac{m}{n}\)

\(\Rightarrow\)2=\(\frac{m^2}{n^2}\)

\(\Rightarrow\)2\(n^2=m^2\)

\(\Rightarrow\)\(m^2⋮n^2\Leftrightarrow m⋮n\)

\(\Rightarrow\)giả sử là vô lý

\(\Rightarrow\)\(\sqrt{2}\)là số vô tỉ

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.