Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”
a) \(\exists a\in\mathbb{Z}:a=a^2\)
b) \(\forall x\in\mathbb{R}:x+0=x\)
c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)
d) \(\forall n\in\mathbb{N}:n>0\)
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
a) \(\forall x\in\mathbb{R}:x+\left(-x\right)=0\) (đúng)
Phủ định là \(\exists x\in\mathbb{R}:x+\left(-x\right)\ne0\) (sai)
b) \(\forall x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}=1\) (đúng
Phủ định là \(\exists x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}\ne1\) (sai)
c) \(\exists x\in R:x=-x\) (đúng)
Phủ định là \(\forall x\in\mathbb{R}:x\ne-x\) (sai)
Mệnh đề P đúng, bình phương của một số thực luôn lớn hơn hoặc bằng 0 (không âm).
Mệnh đề Q sai vì \({x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb Q\), do đó không có số hữu tỉ nào mà bình phương của nó bằng 2.
a) “\(\forall x \in \mathbb{R},x + ( - x) = 0\)”
b) “\(\exists n \in \mathbb{N},{x^2} = 9\)”
∀ x ∈ R : x + ( - x ) = 0 (đúng)
Phủ định là ∃ x ∈ R : x + ( - x ) ≠ 0 (sai)
a) ∀ x ∈ R: x.1 = x
b) ∃ a ∈ R: a + a = 0
c) ∀ x ∈ R: x + (-x) = 0
a) \(\exists x \in \mathbb{Z},\;x \not{\vdots} \;x.\)
b) \(\forall x \in \mathbb{R},\;x + 0 = x.\)
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.