\(\sqrt{3}\) là số vô tỉ

với mọi n ∈ N: \(n^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

Giả sử \(\sqrt{3}\) là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
\(\dfrac{m}{n}=\sqrt{3}\left(1\right)\)
với \(\dfrac{m}{n}\) là phân số tối giản hay m và n có ước chung lớn nhất bằng 1
Khi đó từ \(\left(1\right)\Leftrightarrow m=n\sqrt{3}\Leftrightarrow m^2=3n^2\left(2\right)\)
Từ đó suy ra \(m^2\) chia hết cho 3 nên m phải chia hết cho 3\(\left(3\right)\)
Do đó tồn tại số nguyên k sao cho \(m=3k\) Thay vào \(\left(2\right)\) ta có thể suy ra \(n^2=3k^2\) hay \(n=\sqrt{3}k\)
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để \(\dfrac{m}{n}=\sqrt{3}\) Vậy \(\sqrt{3}\) không là số hữu tỉ \(\left(\sqrt{3}\notin Q\right)\)

18 tháng 9 2021

cảm ơn ạ

 

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:

Điều phải chứng minh tương đương với việc tồn tại vô số số $n$ sao cho \(p|2^n-n\) với mọi \(p\in\mathbb{P}\)

Ta sẽ chỉ là một dạng tổng quát của $n$

------------------------------------------

Vì theo định lý Fermat nhỏ ta \(2^{p-1}\equiv 1\pmod p\)

\(\Leftrightarrow p|2^{p-1}-1\)

Do đó đặt \(n=k(p-1)\)

Khi đó \(2^n-n=2^{k(p-1)}-k(p-1)\equiv 1+ k\pmod p\)

Để \(p|2^n-n\Rightarrow 1+k\equiv 0\pmod p\Leftrightarrow k=pt-1\)

Vậy \(p|2^{(pt-1)(p-1)}-(pt-1)(p-1)\forall p\in \mathbb{P}\)

Nghĩa là tồn tại vô hạn số n có dạng \((pt-1)(p-1)\) với $t$ là số tự nhiên nào đó thỏa mãn điều kiện đề bài.

Ta có đpcm.