K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Lời giải

Giả sử: \(\sqrt{2}\)\(\sqrt{3}\) là các số hữu tỉ

Khi đó: \(\left\{{}\begin{matrix}\sqrt{2}=\dfrac{a}{b}\\\sqrt{3}=\dfrac{x}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2}{b^2}=2\\\dfrac{x^2}{y^2}=3\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}a^2=2b^2\\x^2=3y^2\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}a^2⋮2\\x^2⋮3\end{matrix}\right.\)

Như vậy \(\left\{{}\begin{matrix}b^2⋮2\\y^2⋮3\end{matrix}\right.\) để có thể thỏa mãn điều kiện trên

Vậy \(\sqrt{2}\)\(\sqrt{3}\) là số vô tỉ

AH
Akai Haruma
Giáo viên
14 tháng 7 2018

Lời giải:

Phản chứng. Giả sử \(A=a\sqrt{n}+b\sqrt{n+1}\in\mathbb{Q}\)

Bình phương 2 vế:

\(\Rightarrow a^2n+b^2(n+1)+2ab\sqrt{n(n+1)}=A^2\)

\(\Rightarrow 2ab\sqrt{n(n+1)}=A^2-a^2n-b^2(n+1)\in\mathbb{Q}\)

\(2ab\in\mathbb{Q}\Rightarrow \sqrt{n(n+1)}\in\mathbb{Q}\)

Do \(n\in\mathbb{N}^*\Rightarrow n(n+1)\in\mathbb{N}^*\). Suy ra, để \(\sqrt{n(n+1)}\in\mathbb{Q}\) thì nó phải có dạng \(t\) (\(t\in\mathbb{N})\)

Ta có:

\(\sqrt{n(n+1)}=t\)

\(\Rightarrow n(n+1)=t^2\)

\(\Rightarrow 4n(n+1)=(2t)^2\Rightarrow (2n+1)^2=(2t)^2+1\)

\(\Leftrightarrow (2n+1-2t)(2n+1+2t)=1\)

\(\Rightarrow \left\{\begin{matrix} 2n+1-2t=1\\ 2n+1+2t=1\end{matrix}\right.\rightarrow n=0\) (vô lý do \(n\in\mathbb{N}^*\) )

Vậy giả sử là sai. Do đó \(A\not\in\mathbb{Q}\) hay A vô tỉ.

14 tháng 7 2018

thanks nhiều

13 tháng 10 2017

N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)

=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)

=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)

=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3

25 tháng 7 2018

undefined

6 tháng 4 2019

cho \(\sqrt{2}\) là số vô tỉ, khi đó \(\sqrt{2}=\frac{m}{n}\)

\(\Rightarrow\)2=\(\frac{m^2}{n^2}\)

\(\Rightarrow\)2\(n^2=m^2\)

\(\Rightarrow\)\(m^2⋮n^2\Leftrightarrow m⋮n\)

\(\Rightarrow\)giả sử là vô lý

\(\Rightarrow\)\(\sqrt{2}\)là số vô tỉ

a, mệnh đề đúng 

b, mệnh đề sai 

c, mệnh đề đúng