cho xy=5. chứng minh x^2 + y^2>9,999
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 8 2019
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=10>9,999\)
16 tháng 9 2023
P = x(x - y) - x + y2(x - y) - y2 + 5
P = x - x + y2 - y2 + 5
P = 5
Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015
Q = 5 - 2015
Q = -2010
NK
1
CM
2
NV
Nguyễn Việt Lâm
Giáo viên
18 tháng 6 2019
\(2x^3+2y^3=x^3+x^5+y^3+y^5\ge2x^4+2y^4\)
\(\Rightarrow x^3+y^3\ge x^4+y^4\Rightarrow x^2+y^2+x^3+y^3\ge x^4+x^2+y^4+y^2\ge2x^3+2y^3\)
\(\Rightarrow x^2+y^2\ge x^3+y^3\Rightarrow x+y+x^2+y^2\ge x+x^3+y+y^3\ge2x^2+2y^2\)
\(\Rightarrow x+y\ge x^2+y^2\)
\(\Rightarrow x+y\ge x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow x^2-xy+y^2\le1\Rightarrow x^2+y^2\le1+xy\)
Dấu "=" xảy ra khi \(x=y=1\)
Ta có : (x-y)^2 >= 0
<=> x^2-2xy+y^2>=0
<=> x^2+y^2 >= 2xy = 2.5 = 10 > 9,999
=> x^2+y^2 >= 9,999