cho phân số a = n+1/n-3 (nϵz; n≠ 3)
a) Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì n + 1 chia hết cho n - 3
=> n - 3 + 4 chia hết cho n - 3
Mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4)
=> n - 3 thuộc {-4; -2; -1; 1; 2; 4}
=> n thuộc {-1; 1; 2; 4; 5; 7}
b) Để A có giá trị phân số thì n - 3 khác 0
=> n khác 3
phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d
Chúc bạn học tốt !!!
a/ Gọi d là ƯCLN của n+7; n+6
\(\to \begin{cases}n+7\vdots d\\n+6\vdots d\end{cases}\\\to n+7-(n+6)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
b/ Gọi d là ƯCLN của 3n+2 và n+1
\(\to\begin{cases}3n+2\vdots d\\n+1\vdots d\end{cases}\\\to \begin{cases}3n+2\vdots d\\3n+3\vdots d\end{cases}\\\to 3n+3-(3n+2)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
Để phân số \(\dfrac{n+5}{n+3}\) có giá trị là số nguyên thì:
\(n+5⋮n+3\)
\(\Rightarrow n+3+2⋮n+3\)
\(\Rightarrow2⋮n+3\)
Vì \(n\in N\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
n+3 | 1 | -1 | 2 | -2 |
n | -2 | -4 | -1 | -5 |
Mà \(n\in N\) =>Không có giá trị của n để phân số đã cho nhận giá trị nguyên.
Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên
A = \(\dfrac{3n+2}{n+1}\) (đk n \(\in\)Z ; n \(\ne\) -1)
A \(\in\) Z ⇔ 3n + 2 ⋮ n + 1
3n + 3 - 1 ⋮ n + 1
3(n +1) - 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) { -1; 1}
n \(\in\) { -2; 0}
\(A=\dfrac{3n+2}{n+1}=\dfrac{3n+3-2}{n+1}=\dfrac{3\left(n+1\right)-2}{n+1}=3-\dfrac{2}{n+1}\)
Để A có giá trị nguyên ⇒ n+1 là Ư(2)={-1;1;-2;2}
⇒ n+1 ϵ {-1;1;-2;2}
⇒ n ϵ {-2;0;-3;1}
\(2\left(n+1\right)-5⋮n-1\Leftrightarrow-5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Ta có: 2n-3=2n+2-5=2(n+1)-5 vậy (2n-3)⋮(n+1)⇔5⋮ (n+1)⇔n+1 ϵ Ư(5)⇔n+1 ϵ { -5; -1; 1;5} ⇔ n ϵ {-6; -2; 0; 4}
a: =>3n+3-1 chia hết cho n+1
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
b: =>xy-5y-x-1=0
=>x(y-1)-5y+5-6=0
=>(x-5)(y-1)=6
\(\Leftrightarrow\left(x-5;y-1\right)\in\left\{\left(1;6\right);\left(6;1\right);\left(-1;-6\right);\left(-6;-2\right);\left(2;3\right);\left(3;2\right);\left(-3;-2\right);\left(-2;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;7\right);\left(11;2\right);\left(4;-5\right);\left(-1;-1\right);\left(7;4\right);\left(8;3\right);\left(3;-2\right);\left(2;-1\right)\right\}\)
Có thiệt là lớp 6 không vậy trời
lop6 ?????????