K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

A =  -2 ( x^2 - 6x + 3/2 )

A = -2 ( x^2 - 6x + 3^2 - 3^2 + 3/2 )

A = -2 [ ( x - 3 )^2 -15/2 ]

A = -2 ( x - 3 )^2 + 15 \(\le\)15 

Vậy: MaxA = 15 <=> x - 3 = 0

                         <=> x       = 3

25 tháng 11 2019

bạn ghi đề rõ ràng mình giải cho

25 tháng 11 2019

cho p/s A=6x+1 / 12x^2+1 tim GTNN va GTLN cua A

13 tháng 12 2016

a) \(-\left|2x-4\right|+2016\)

Vì: \(\left|2x-4\right|\ge0\) , với mọi x

=> \(-\left|2x-4\right|\le0\)

=> \(-\left|2x-4\right|+2016\le2016\)

Vậy GTLN của bt đã cho la 2016 khi \(2x-4=0\Leftrightarrow x=2\)

b) \(1981+\left|x-4\right|\)

Vì: \(\left|x-4\right|\ge0\) , với mọi x

=> \(1981+\left|x-4\right|\ge1981\)

Vậy GTNN của bt đã cho là 1981 khi \(x-4=0\Leftrightarrow x=4\)

11 tháng 11 2016

Ta nhận thấy \(2x+3y\)\(x^2+y^2\) là các thành phần của các đẳng thức Bunhiacốpxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2,b=3.\)

Theo bất đẳng thức trên :

\(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\Rightarrow\left(2x+3y\right)^2\le13.13.4\)

\(\Rightarrow\left|2x+3y\right|\le26\Rightarrow2x+3y\le26.\)Vậy \(MAX_A=26\Leftrightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\2x+3y\ge0\end{cases}\)

Thay \(y=\frac{3x}{2}\) vào \(x^2+y^2=52,\)ta được \(x^2+\frac{9x^2}{4}=52\).Giai phương trình này được : \(x=\pm4\).

Với \(x=4\) thì \(y=6\) , thõa mãn ( 2 ) . Với \(x=-4\) thì \(y=-6\), không thõa mãn (2 )

11 tháng 11 2016

copy bài đứa khác

6 tháng 4 2017

help me khocroi