K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

a) Vì H' đối xứng với H qua BC nên BC là đường trung trực của HH' => BH = BH', CH = CH'

Xét ∆BHC và ∆BH'C có:

      BH = BH' (cmt)

      BC: cạnh chung

      HC = H'C (cmt)

Do đó ∆BHC = ∆BH'C (c.c.c)

b) Gọi T là giao điểm của HH' với BC

∆HH'K có T là trung điểm của HH' (gt) và HI = IK (gt) nên TI là đường trung bình của tam giác => HI // H'K hay BC // H'K

Dễ chứng minh: ∆HIB = ∆KIC (c.g.c) => ^HBI = ^KCI (hai góc tương ứng)

Mà ^HBI = ^H'BC (∆BHC = ∆BH'C) nên ^H'BC = ^KCI

Hình thang BH'KC có ^H'BC = ^KCI nên là hình thang cân (đpcm)

7 tháng 9 2021
A: Ta có tam giác ABC cân tại A. =>AB=AC(2cạnh tương ứng) Xét tam giác ABH và tam giác ACH có: AB:Cạnh chung GÓC BAH= GÓC CAH(Theo bài ra) AB=AC(Cmt) =>Tam giác ABH=Tam giác ACH(c.g.c) Phần B thì nghỉ dịch nhiều quá nên mk ko biết nó đối theo hướng nào nên ko làm đc. Sorry bn😪 CHÚC BN HOK TỐT.😍
19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
11 tháng 7 2023

A B C P Q K H

a/

\(AQ\perp AB;PH\perp AB\) => AQ//PH

\(AP\perp AC;QH\perp AC\) => AP//QH

=> APHQ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> APHQ là hình chữ nhật (Hình bình hành có 1 góc vuông là HCN)

b/

Xét tg vuông QHC có

KH=KC (gt)

\(\Rightarrow QK=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Mà \(KH=KC=\dfrac{HC}{2}\)

=> QK=KH => tg KQH cân tại K

11 tháng 12 2021

c: Xét tứ giác ABMH có 

I là trung điểm của AM

I là trung điểm của BH

Do đó: ABMH là hình bình hành

Suy ra: AH//BC

a: Xét ΔABC có

H là trung điểm của AC

I là trung điểm của BC

Do đó: HI là đường trung bình của ΔBAC

Suy ra: HI//AB

hay HK//AB

Xét tứ giác ABKH có 

HK//AB

BK//AH

Do đó: ABKH là hình bình hành