K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Cái đề như shít thế kia ai thèm làm cho =))

2 tháng 1 2017

thánh này làm được

28 tháng 3 2016

a) A  = 1+32+34+36+...+32006​.

2A= (32+32006)+(34+32004)+.....15988 cặp số..+2

= 32038.15988 + 2

= 512223546
Vậy tổng của A = 512223546
Số dư của A chia cho 113= 512223546 - 113.4532951=83 (Đây là cách tính số dư: Số chia - số bị chia x phần nguyên)

1 tháng 3 2023

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

1 tháng 3 2023

`1+32+34+36?` Đề nào cho đấy?

24 tháng 5 2023

  C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324

3C =      32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325

3C - C = -325 - 3

2C      = -325 - 3

2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\)  + 3]

2C = - \(\overline{..6}\)

⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\) 

⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)

24 tháng 5 2023

b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0

Vì (\(x+1\))2022 ≥ 0 

\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0

Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0

⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:

(\(x,y\)) = (-1; 1)

DT
24 tháng 10 2023

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

24 tháng 10 2023

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

Bài 1: 

\(VT=1\cdot\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\cdot\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)

\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)

\(=a^{32}-b^{32}\)

23 tháng 12 2023

\(9A=3^2-3^4+3^6-3^8+...+3^{78}-3^{80}\)

\(10A=9A+A=1-3^{80}\)

\(\Rightarrow1-10A=3^{80}=\left(3^{40}\right)^2\) là số chính phương

24 tháng 12 2023

làm đề cầu giấy à

 

7 tháng 10 2023

Ta có:

\(A=3+3^2+3^3+3^4+3^5+3^6\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)\)

\(A=39+3^3.\left(3+3^2+3^3\right)\)

\(A=39+3^3.39\)

\(A=39.\left(1+3^3\right)\)

Vì \(39⋮13\) nên \(39.\left(1+3^3\right)⋮13\)

Vậy \(A⋮13\)

\(#WendyDang\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)$

$=3(1+3+3^2)+3^4(1+3+3^2)=(1+3+3^2)(3+3^4)=13(3+3^4)\vdots 13$ 

Ta có đpcm.

19 tháng 3 2022

tận cùng bằng chữ số 0 (vì 30 là số tròn chục)

19 tháng 3 2022

30