cho số nguyên dương a -2 là ước của 3a^2-2a+10.tính tổng tất cả các giá trị có thể của a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(3a^2-2a+10=\left(3a^2-6a\right)+\left(4a-8\right)+2\)
=> \(3a\left(a-2\right)+4\left(a-2\right)+2\)
Vì a - 2 là ước của \(3a^2-2a+10\) => 2 chia hết
a - 2 | 1 | -1 | 2 | -2 |
a | 3 | 1 | 4 | 0 |
Thử lại | Chọn | Chọn | Chọn | chọn |
=> Tổng = 3 + 1 + 4 + 0 = 8
Cho $A=6$ thì $A$ có 2 ước nguyên tố $2,3$
$S=1+2+3+6=12$
$2A=6$ nên $S=2A$
Bạn xem lại đề.
Một ví dụ khác:
$A=12=2^2.3$ có 2 ước nguyên tố là $2,3$
$S=1+2+3+4+6+12=28>24$
Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)