Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Giả sử a là số chẵn thì a^2 là chẵn, 3a cũng là số chẵn => M = a^2+3a+1 là số lẻ ( Vì chẵn + chẵn +lẻ = lẻ ) => Mọi ước của M đều phải lẻ
Giả sử a là số lẻ thì a^2 là lẻ, 3a cũng là số lẻ => M = a^2+3a+1 là số lẻ ( Vì lẻ + lẻ + lẻ = lẻ ) => Mọi ước của M đều phải lẻ
Đặt n-2= a^3; n-5=b^3 (a,b thuộc Z)
Ta có
\(a^3-b^3=\left(n-2\right)-\left(n-5\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=3\)
Ta thấy \(a^2+ab+b^2\ge0\)nên
TA CÓ BẢNG :
a-b | a2+ab+b2 | a | b | |
---|---|---|---|---|
1 | 3 | |||
3 | 1 | |||
Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.
Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)
Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\)
\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)
giờ tìm ước á
Có n6+206 có ước là n2+2
=> n6+206 chia hết n2+2
=>(n2+2)(n4-2n2+4)+198 chia hết n2+2
=> n2+2 thuộc Ư(198)={3;6;9;11;18;22;33;66;198} (Do n^2+1 >1)
=> n^2 thuộc {1;4;7;9;16;20;31;64;196}
Mà n thuộc N*
=> n thuộc {1;2;3;4;8;14}
Chúc học tốt Kkk
Có \(3a^2-2a+10=\left(3a^2-6a\right)+\left(4a-8\right)+2\)
=> \(3a\left(a-2\right)+4\left(a-2\right)+2\)
Vì a - 2 là ước của \(3a^2-2a+10\) => 2 chia hết
=> Tổng = 3 + 1 + 4 + 0 = 8