Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(3a^2-2a+10=\left(3a^2-6a\right)+\left(4a-8\right)+2\)
=> \(3a\left(a-2\right)+4\left(a-2\right)+2\)
Vì a - 2 là ước của \(3a^2-2a+10\) => 2 chia hết
a - 2 | 1 | -1 | 2 | -2 |
a | 3 | 1 | 4 | 0 |
Thử lại | Chọn | Chọn | Chọn | chọn |
=> Tổng = 3 + 1 + 4 + 0 = 8
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n ∈ N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
a) \(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
<=> (2a - 9)(3a - 2) + 3a(2a - 5) = 2(2a - 5)(3a - 2)
<=> 6a2 - 4a - 27a + 16 + 6a2 - 15a = 12a2 - 8a - 30a + 20
<=> 12a2 - 44a + 16 = 12a2 - 38a + 20
<=> 12a2 - 44a + 16 - 12a2 = -38a + 20
<=> -44a + 16 = -36a + 20
<=> -44a + 16 + 36a = 20
<=> -8a + 16 = 20
<=> -8a = 20 - 16
<=> -8a = 4
<=> a = -4/8 = -1/2
b) nhân chéo và làm tương tự