Tìm cặp số nguyên x,y thỏa mãn x(x2-6x +12)=y3+27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x-2\right)^3=x^3-6x^2+12x-8>x^3-6x^2+12x-27=y^3\)
ta có \(6x^2-12x+27>0vớimoix\)
\(=>-6x^2+12x-27< 0\)
\(=>y^3>x^3\)
mà x y nguyên nên y^3 nguyên =>\(y^3=\left(x-1\right)^3\)
Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo!
-3xy+4y-6x=27
-3xy+4y-(6x+8)=19
y(4-3x)-2(4-3x)=19
(y-2)(4-3x)=19
Vì y;x là số nguyên => y-2;4-3x là số nguyên
=> y-2;4-3x ∈ Ư(19)
Ta có bảng:
y-2 | 1 | 19 | -1 | -19 |
4-3x | 19 | 1 | -19 | -1 |
x | 3 | 21 | 1 | -17 |
y | -5 | 1 | 11 | 5/3 (loại) |
Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .
ta có:
−3xy+4y−6x−27=0
⇒−3xy+4y−(6x+8)=19
⇒y(4−3x)−2(4−3x)=19
⇒(y−2)(4−3x)=19,y∈Z⇒y−2,4−3x∈Ư(19)
ta có bảng:
y-2 | 1 | -1 | 19 | -19 |
y | 3 | 1 | 21 | -17 |
4-3x | 19 | -19 | 1 | -1 |
x | -5 | \(\notin Z\) | 1 | \(\notin Z\) |
vậy...
học tốt
\(x^2+4y^2=x^2y^2-2xy\)
\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)
\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)
\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)
\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)
Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)
TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)
Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)
\(\Leftrightarrow x^2-xy-5x+4y+9=0\)
\(\Leftrightarrow\left(x^2-xy\right)-\left(4x-4y\right)-x+9=0\)
\(\Leftrightarrow x\left(x-y\right)-4\left(x-y\right)-x+9=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4\right)-\left(x-4\right)+5=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-y-1\right)=-5\)
Do \(x;y\in Z\Rightarrow\left(x-4\right);\left(x-y-1\right)\in Z\)
Ta có các trường hợp sau
+ TH1:
\(\left\{{}\begin{matrix}x-4=1\\x-y-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=9\end{matrix}\right.\)
+ TH2:
\(\left\{{}\begin{matrix}x-4=-1\\x-y-1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
+ TH3:
\(\left\{{}\begin{matrix}x-4=5\\x-y-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9\end{matrix}\right.\)
+ TH4:
\(\left\{{}\begin{matrix}x-4=-5\\x-y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
a)x+y+xy=2
=> x+xy+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>x(y+1)+(y+1)=3
=>(y+1)(x+1)=3
Đến đây thì dễ rồi, bạn tự tìm nốt nha
b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
Với x>12 thì \(\frac{3}{12-x}< 0\)
Với x<12 thì \(\frac{3}{12-x}.>0\)
Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất
=>12-x=1
=>x=11
Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.
Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.
Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:
y = (-b ± √(b^2 - 4ac))/(2a)
Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:
y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))
y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)
y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)
Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.
Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.
Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:
for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.
ta có :
\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)
vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :
\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)
\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)
vô nghiệm .
Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)