K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
3 tháng 9 2021

ta có :

\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)

vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :

\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)

\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)

hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)

vô nghiệm .

Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)

30 tháng 10 2021

ta có  \(\left(x-2\right)^3=x^3-6x^2+12x-8>x^3-6x^2+12x-27=y^3\)

ta có \(6x^2-12x+27>0vớimoix\)

\(=>-6x^2+12x-27< 0\)

\(=>y^3>x^3\)

mà x y nguyên nên y^3 nguyên =>\(y^3=\left(x-1\right)^3\)

NV
20 tháng 8 2021

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

25 tháng 9 2019

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

5 tháng 11 2017

ta có: \(6x+5y+15=2xy.\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-30\)

\(\Leftrightarrow\left(2x-5\right)\left(3-y\right)=-30\)

mà 2x-5 là số lẻ nên \(2x-5\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

                             \(\Leftrightarrow x\in\left\{3;2;4;1;5;0;10;-5\right\}\)

\(\Leftrightarrow y\in\left\{33;-27;13;-7;9;-3;5;1\right\}\)

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả