Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(a = \left( { - 2} \right).\left( { - 3} \right) = 2.3 = 6\)
\(b = \left( { - 15} \right).\left( { - 6} \right) = 15.6 = 90\)
\(c = \left( { + 3} \right).\left( { + 2} \right) = 3.2 = 6\)
\(d = \left( { - 10} \right).\left( { - 20} \right) = 10.20 = 200\).
a. VT:(x-y)-(x-z)
= x-y-x+z
= z-y
VP:(z+x)-(y+x)
=z+x-y-x
=z-y
=> VT=VP => đpcm.
b. VT:(x-y+z)-(y+z-x)-(x-y)
= x-y+z-y-z+x-x+y
= x-y
VP:(z-y)-(z-x)
= z-y-z+x
= x-y
=> VT=VP => đpcm.
c. VT: a(b+c)-b(a-c)
=ab+ac-ab+bc
= ac+bc
VP: (a+b)c
= ac+bc
=> VT=VP => đpcm.
d. VT: a(b-c)-a(b+d)
= ab-ac-ab-ad
= -ac-ad
VP: -a(c+d)
= -ac-ad
=> VT=VP => đpcm
tương tự...
a) Vế trái = a.(c + d) + b.( c+ d) - a.(b + c) - d.(b + c)
= a.[(c+ d) - (b + c)] + [b(c+d) - d.(b + c)]
= a.(d - b) + (bc + bd - db - dc) = a.(d - b) + c.(b - d) = a.(d - b) - c.(d - b) = (a - c).(d - b) = Vế phải
Vậy....
b) làm tương tự:
a) (a+b) (c+d) - (a+d) (b+c) = (ac + ad + bc + bd) - (ab + ac +bd + cd) = ac + ad + bc + bd - ab -ac - bd - cd
và bằng ad + bc - ab - cd = a( d-b ) + c( b-d ) = a (d-b) - c (d-b) = (a-c)(d-b) (dpcm)
p/s: ý B chứng minh tương tự.
a,a-b+c-d=a+c-b-d=(a+c)-(b+d)(đpcm)
b,(a-b)-(c-d)=a-b-c+d=(a+d)-(b+c)(đpcm)
a, Ta có (a-b) +(c-d) = a-b+c-d = (a+c)-(b+d) ( ĐPCM)
b, Ta có (a-b)-(c-d) = a-b-c+d = ( a+d) - ( b+c) ( ĐPCM )
Tk mk nhé
\(B=a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)=a.b.z-a.c.y+b.c.x-a.b.z+a.c.y-b.c.x=\left(a.b.z-a.b.z\right)-\left(a.c.y-a.c.y\right)+\left(b.c.x-b.c.x\right)=0-0+0=0\)
B = a(bz - cy) + b(cx - az) + c(ay - bx) = abz - acy + bcx - baz + cay - cbx = 0