Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vế trái = a.(c + d) + b.( c+ d) - a.(b + c) - d.(b + c)
= a.[(c+ d) - (b + c)] + [b(c+d) - d.(b + c)]
= a.(d - b) + (bc + bd - db - dc) = a.(d - b) + c.(b - d) = a.(d - b) - c.(d - b) = (a - c).(d - b) = Vế phải
Vậy....
b) làm tương tự:
a) (a+b) (c+d) - (a+d) (b+c) = (ac + ad + bc + bd) - (ab + ac +bd + cd) = ac + ad + bc + bd - ab -ac - bd - cd
và bằng ad + bc - ab - cd = a( d-b ) + c( b-d ) = a (d-b) - c (d-b) = (a-c)(d-b) (dpcm)
p/s: ý B chứng minh tương tự.
a. VT:(x-y)-(x-z)
= x-y-x+z
= z-y
VP:(z+x)-(y+x)
=z+x-y-x
=z-y
=> VT=VP => đpcm.
b. VT:(x-y+z)-(y+z-x)-(x-y)
= x-y+z-y-z+x-x+y
= x-y
VP:(z-y)-(z-x)
= z-y-z+x
= x-y
=> VT=VP => đpcm.
c. VT: a(b+c)-b(a-c)
=ab+ac-ab+bc
= ac+bc
VP: (a+b)c
= ac+bc
=> VT=VP => đpcm.
d. VT: a(b-c)-a(b+d)
= ab-ac-ab-ad
= -ac-ad
VP: -a(c+d)
= -ac-ad
=> VT=VP => đpcm
tương tự...
A=(a-b+c)-(b-c-d)+(c-d+a)
A=a-b+c-b+c+d+c-d+a
A=2a-2b-3c
B=( a + b - c ) + ( b + c - a ) - ( a - c )
B=a + b - c + b + c - a - a + c
B=2b + c - a
C = - ( 4a + 5b + c) - ( 5b + 3c )
C = -4a - 5b - c - 5b -3c
C= -4a - 10b - 4c
D= ( a - 3b + c) - ( 2a -b +c)
D= a - 3b +c - 2a + b -c
D= a - 2b
Có: Vế trái : (a - c)(b + d) - (a - d)(b + c)
= ab + ad - bc - cd - ab - ac + bd + cd
= ad - bc - ac + bd
= ad - ac + bd + bc
= a(d - c) + b(d - c)
= (a + b)(d - c) (= vế phải)
Vậy đpcm
BĐVT có,
=ab+ad-bc-cd-ab-ac+bd+cd
=ad-ac-bc+bd
=a(d-c)+b(d-c)
=(a+b)(d-c)=vế phải
suy ra đpcm
tik nha
giả sử điều phải chứng minh là đúng thì:
\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)
do đó điều phải chứng minh là đúng
\(\left(a+b\right)-\left(-a+b-c\right)+\left(c-a-b\right)\)
\(=a+b+a-b+c+c-a-b\)
\(=\)\(a-b+2c\)( đpcm )
\(a\left(b-c\right)-a\left(b+d\right)\)
\(=a\left(b-c-b-d\right)\)
\(=\)\(a\left(-c-d\right)\)
\(=-a\left(c+d\right)\)( đpcm )
học tốt
b) Ta có :
\(VT=\left(4x-3y+2\right)-\left(3x-4y+2\right)\)
\(=4x-3y+2-3x+4y-2\)
\(=\left(4x-3x\right)-\left(3y-4y\right)+\left(2-2\right)\)
\(=x+y\)
\(VP=\left(2x+2y\right)-\left(x+y\right)=2x+2y-x-y\)
\(=\left(2x-x\right)+\left(2y-y\right)\)
\(=x+y\)
\(\Rightarrow VT=VP\)
\(\Rightarrow\)đpcm
a,a-b+c-d=a+c-b-d=(a+c)-(b+d)(đpcm)
b,(a-b)-(c-d)=a-b-c+d=(a+d)-(b+c)(đpcm)
a, Ta có (a-b) +(c-d) = a-b+c-d = (a+c)-(b+d) ( ĐPCM)
b, Ta có (a-b)-(c-d) = a-b-c+d = ( a+d) - ( b+c) ( ĐPCM )
Tk mk nhé