Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
Lời giải:
$T=3-3^2+3^3-3^4+....-3^{2000}$
$3T=3^2-3^3+3^4-3^5+...-3^{2001}$
$\Rightarrow T+3T=3-3^{2001}$
$\Rightarrow 4T=3-3^{2001}$
$\Rightarrow T=\frac{3-3^{2001}}{4}$
a, A = 1 + 3 + 32 + 33 + ... + 32000
3.A = 3 + 32 + 33+ 33+... + 32001
3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)
2A = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - 33 - ... - 32000
2A = 32001 - 1
A = \(\dfrac{3^{2001}-1}{2}\)
a,714+382+286+318
\(=\left(714+286\right)+\left(382+318\right)\)
\(=1000+700\)
= \(1700\)
b,18.73+15.18+12.18
\(=18.\left(73+15+12\right)\)
\(=18.100\)
\(=1800\)
c,(37+63) : {250:[450-(4.5^3-2^2.25)]}
\(=100:\left\{250:\left[450-\left(2^2.125-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(2^2.\left(125-25\right)\right)\right]\right\}\)
\(=100:\left\{250:\left[450-400\right]\right\}\)
\(=100:\left\{250:50\right\}\)
\(=100:5\\ =20\)
CHÚC BANJ HỌC TỐT!!
a) 714+382+286+318
=(714+286)+(382+318)
=1000+700
=1700
b) 18.73+15.18+12.18
=18.(73+15+12)
=18.100
=1800
c) (37+63):{250:[450-(4.5^3-2^2.25)]}
=100:{250:[450-(4.125-4.25)]}
=100:{250:[450-4.(125-25)]}
=100:{250:[450-4.100]}
=100:{250:[450-400]}
=100:{250:50}
=100:5
=20
-Chúc bạn học tốt-
\(2^{3000}=2^{3\cdot1000}=\left(2^3\right)^{1000}=8^{1000}< 9^{1000}=\left(3^2\right)^{1000}=3^{2\cdot1000}=3^{2000}\)
a ) 4 7 + 1 7 + 3 7 = 8 7 b ) 4 7 + − 3 7 + − 1 2 + 1 2 = 1 7
c ) − 27 10 + − 3 10 + 1 4 + 5 4 + 13 2 = − 3 + 3 2 + 13 2 = 5 d ) 8 5 + 7 5 + − 11 4 + − 9 4 + − 7 20 = 3 − 5 + − 7 20 = − 47 20 e ) 7 5 + − 1 15 + − 11 3 + 11 2 + 1 6 + ( − 2 ) = 4 3 + 2 + ( − 2 ) = 4 3