Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
3100-1=(34)25-1=9125-1
9125 chia hết cho 7 nên 9125-1 chia 7 dư 1
Đồng dư thì chịu!!!
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
\(B=3^2+3^3+3^6+.....+3^{60}\)
\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)
\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)
\(\Rightarrow8B=3^{62}-3^2\)
\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)
A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.
mik làm zậy
A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.
Mình chọn số 10311
Mình làm như thế này, đúng thì k còn sai thì sửa nha !!!
A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.
Căng thật, lớp 6 đã học đồng dư =((!
301293 : 13
Ta có: 301246 đồng dư với 1 (mod 13)
=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.
Vậy 301293 : 13 dư 93
P/s: mình không chắc, mới học lớp 6
Ta có :
3012 \(\equiv\)9 ( mod13 )
301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )
=> 301293 \(\equiv\)1 ( mod13 )
Vậy 301293 : 13 dư 1
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9