Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có B = 1- 1/5.10 - 1/10.15 -.......- 1/95 .100
=> 5B = 5 -( 5/5.10+5/10.15 +....+ 5/95.100
= > 5B = 5 - ( 1/5 -1/100 )
=> 5B= 481/100
=> B = 481/500
a) Mình ko ghi lại đề nhé!
= \(\frac{1}{2}\) - ( \(\frac{1}{3.7}\) + \(\frac{1}{7.11}\) + ... + \(\frac{1}{23.27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - .... - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . \(\frac{8}{27}\)
= \(\frac{1}{2}\) - \(\frac{2}{27}\) = \(\frac{23}{54}\)
b) ..............................................................................
= \(\frac{1}{5}\) . ( \(\frac{5}{5.10}\) - \(\frac{5}{10.15}\) - ... - \(\frac{5}{95.100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - ... - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . \(\frac{19}{100}\)
= \(\frac{19}{500}\)
k mình nha! Chúc bạn học tốt và được nhiều k!
B=1+\(\dfrac{1}{5.10}\)+\(\dfrac{1}{10.15}\)+\(\dfrac{1}{15.20}\)+......+\(\dfrac{1}{95.100}\)
5B = 5 +\(\dfrac{5}{5.10}+\dfrac{5}{10.15}+\dfrac{5}{15.20}+........+\dfrac{5}{95.100}\)
5B=5+\(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{20}+.........+\dfrac{1}{95}-\dfrac{1}{100}\)
5B=5+\(\dfrac{1}{5}-\dfrac{1}{100}\)
5B=\(\dfrac{519}{100}\)
=>B= \(\dfrac{519}{100}:5=\dfrac{519}{500}\)
A= \(\dfrac{1}{3.7}\) +\(\dfrac{1}{7.11}\)+\(\dfrac{1}{11.15}\)+\(\dfrac{1}{15.19}\)+\(\dfrac{1}{19.23}\)+\(\dfrac{1}{23.27}\)
A= 4.(\(\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+\dfrac{1}{15.19}+\dfrac{1}{19.23}\)+\(\dfrac{1}{23.27}\)
A=4.\(\dfrac{1}{3.7}+4.\dfrac{1}{7.11}+4.\dfrac{1}{11.15}+4.\dfrac{1}{15.19}+4.\dfrac{1}{19.23}+4.\dfrac{1}{23.27}\)
A=\(4.(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{29}+\dfrac{1}{29})\)
A= 4 (.\(\dfrac{1}{3}-\dfrac{1}{29}\))
A=\(\dfrac{104}{87}\)
Bài 1:
a) \(B=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{61.63}-\frac{2}{63.65}\)
\(B=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{61.63}+\frac{2}{63.65}\right)\)
\(B=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{61}-\frac{1}{63}+\frac{1}{63}-\frac{1}{65}\right)\)
\(B=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(B=1-\frac{62}{195}\)
\(B=\frac{133}{195}\)
b) \(C=1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(C=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(C=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(C=1-\frac{1}{5}.\frac{19}{100}\)
\(C=1-\frac{19}{500}\)
\(C=\frac{481}{500}\)
bài 2 thì bn lm như bn Phùng Minh Quân nha!
Câu 1 : mình ko hiểu đề bài cho lắm ~.~
Câu 2 :
Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\)
\(\Rightarrow\)\(A=10+\left|\frac{1}{2}-x\right|\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|\frac{1}{2}-x\right|=0\)
\(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(10\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
#)Giải :
( k chép lại đề )
\(x=\frac{1}{5}\left(\frac{5}{5.10}-\frac{5}{10.15}-...-\frac{5}{95.100}\right)\)
\(x=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(x=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(x=\frac{1}{5} . \frac{19}{100}\)
\(x=\frac{19}{500}\)
a) \(D=\left(2\dfrac{2}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\right)\div\left(-\dfrac{3}{17}\right)\)
\(D=\dfrac{32}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\times\dfrac{-17}{3}\)
\(D=\dfrac{-3}{5}\)
b) \(\dfrac{1}{2}-\dfrac{1}{3\times7}-\dfrac{1}{7\times11}-\dfrac{1}{11\times15}-\dfrac{1}{15\times19}-\dfrac{1}{19\times23}-\dfrac{1}{23\times27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+\dfrac{1}{15\times19}+\dfrac{1}{19\times23}+\dfrac{1}{23\times25}\right)\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+\dfrac{4}{11\times15}+\dfrac{4}{15\times19}+\dfrac{4}{19\times23}+\dfrac{4}{23\times27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{9-1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\times\dfrac{8}{27}\)
\(=\dfrac{1}{2}-\dfrac{2}{27}\)
\(=.....\)
Đó đến đây bn tự lm nốt. Câu c bn lm tương tự.
Mình cho bn dạng này, nếu bn chưa biết (để lm câu c)
\(\dfrac{x}{y\left(y+x\right)}=\dfrac{x}{y}-\dfrac{x}{y+x}\)
Chúc bn học tốt
bai nay de ma hinh nhu day khnog phai cua lop 7 dau ban sai roi
\(1-\frac{1}{5\cdot10}-\frac{1}{10\cdot15}-\frac{1}{15\cdot20}-...-\frac{1}{95\cdot100}\)
\(=1-\left(\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+...+\frac{1}{95\cdot100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)=1-\frac{19}{500}=\frac{481}{500}\)