Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình ko ghi lại đề nhé!
= \(\frac{1}{2}\) - ( \(\frac{1}{3.7}\) + \(\frac{1}{7.11}\) + ... + \(\frac{1}{23.27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - .... - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . \(\frac{8}{27}\)
= \(\frac{1}{2}\) - \(\frac{2}{27}\) = \(\frac{23}{54}\)
b) ..............................................................................
= \(\frac{1}{5}\) . ( \(\frac{5}{5.10}\) - \(\frac{5}{10.15}\) - ... - \(\frac{5}{95.100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - ... - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . \(\frac{19}{100}\)
= \(\frac{19}{500}\)
k mình nha! Chúc bạn học tốt và được nhiều k!
a) \(D=\left(2\dfrac{2}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\right)\div\left(-\dfrac{3}{17}\right)\)
\(D=\dfrac{32}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\times\dfrac{-17}{3}\)
\(D=\dfrac{-3}{5}\)
b) \(\dfrac{1}{2}-\dfrac{1}{3\times7}-\dfrac{1}{7\times11}-\dfrac{1}{11\times15}-\dfrac{1}{15\times19}-\dfrac{1}{19\times23}-\dfrac{1}{23\times27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+\dfrac{1}{15\times19}+\dfrac{1}{19\times23}+\dfrac{1}{23\times25}\right)\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+\dfrac{4}{11\times15}+\dfrac{4}{15\times19}+\dfrac{4}{19\times23}+\dfrac{4}{23\times27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{9-1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\times\dfrac{8}{27}\)
\(=\dfrac{1}{2}-\dfrac{2}{27}\)
\(=.....\)
Đó đến đây bn tự lm nốt. Câu c bn lm tương tự.
Mình cho bn dạng này, nếu bn chưa biết (để lm câu c)
\(\dfrac{x}{y\left(y+x\right)}=\dfrac{x}{y}-\dfrac{x}{y+x}\)
Chúc bn học tốt
Chắc là đề thiếu: \(y=\frac{1}{2}-\frac{1}{3\cdot7}-\frac{1}{7\cdot11}-\frac{1}{11\cdot15}-\frac{1}{15\cdot19}-\frac{1}{19\cdot23}-\frac{1}{23\cdot27}\)
\(y=\frac{1}{2}-\left(\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+...+\frac{1}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)
Trả lời:
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
Học tốt
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-...-\frac{1}{23.27}=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{23.27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
\(1-\frac{1}{5\cdot10}-\frac{1}{10\cdot15}-\frac{1}{15\cdot20}-...-\frac{1}{95\cdot100}\)
\(=1-\left(\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+...+\frac{1}{95\cdot100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)=1-\frac{19}{500}=\frac{481}{500}\)
ta có B = 1- 1/5.10 - 1/10.15 -.......- 1/95 .100
=> 5B = 5 -( 5/5.10+5/10.15 +....+ 5/95.100
= > 5B = 5 - ( 1/5 -1/100 )
=> 5B= 481/100
=> B = 481/500
B=1+\(\dfrac{1}{5.10}\)+\(\dfrac{1}{10.15}\)+\(\dfrac{1}{15.20}\)+......+\(\dfrac{1}{95.100}\)
5B = 5 +\(\dfrac{5}{5.10}+\dfrac{5}{10.15}+\dfrac{5}{15.20}+........+\dfrac{5}{95.100}\)
5B=5+\(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{20}+.........+\dfrac{1}{95}-\dfrac{1}{100}\)
5B=5+\(\dfrac{1}{5}-\dfrac{1}{100}\)
5B=\(\dfrac{519}{100}\)
=>B= \(\dfrac{519}{100}:5=\dfrac{519}{500}\)
A= \(\dfrac{1}{3.7}\) +\(\dfrac{1}{7.11}\)+\(\dfrac{1}{11.15}\)+\(\dfrac{1}{15.19}\)+\(\dfrac{1}{19.23}\)+\(\dfrac{1}{23.27}\)
A= 4.(\(\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+\dfrac{1}{15.19}+\dfrac{1}{19.23}\)+\(\dfrac{1}{23.27}\)
A=4.\(\dfrac{1}{3.7}+4.\dfrac{1}{7.11}+4.\dfrac{1}{11.15}+4.\dfrac{1}{15.19}+4.\dfrac{1}{19.23}+4.\dfrac{1}{23.27}\)
A=\(4.(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{29}+\dfrac{1}{29})\)
A= 4 (.\(\dfrac{1}{3}-\dfrac{1}{29}\))
A=\(\dfrac{104}{87}\)