Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
a: \(\Leftrightarrow5^{10}⋮5^{2x}\)
\(\Leftrightarrow2x\in\left\{1;2;5;10\right\}\)
hay \(x\in\left\{\dfrac{1}{2};1;\dfrac{5}{2};5\right\}\)
b: \(\Leftrightarrow\left(2x-1;y-2\right)\in\left\{\left(1;35\right);\left(5;7\right);\left(7;5\right);\left(35;1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;37\right);\left(3;9\right);\left(4;7\right);\left(18;3\right)\right\}\)
\(x^6-x^4+2x^3+2x^2=y^2\)
\(y^2+y=x^4+x^3+x^2+x=0\left(1\right)\)
\(\Leftrightarrow y\left(y+1\right)=x\left(x^3+x^2+x+1\right)=0\)
Ta có 4 PT
\(x1=0;y1=0\)
\(x2=0;y2=-1\)
\(x3=-1;y3=0\)
\(x4=-1;y4=-1\)