Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) x+y =x.y
x=x.y-y
x=y(x-1)
x/y=x-1. do theo bài ra thì x/y=x+y nên x+y=x-1 suy ra y=-1 rồi từ đó tính ra x thôi
a) ta có x-y=2x+2y
x=2x+3y
3y=-x
x/y=3/(-1). do theo đề ra thì x/y= x-y nên suy ra x-y=3/(-1) (1)
mặt khác x/y=2(x+y) nên 2(x+y)=3/(-1)hay x+y=3/(-2)(2)
từ (1)và (2) thì tìm ra x,y thôi
( chú ý vì x/5 = y/7 = z/3 =>x;y;z cùng dấu )
x/5 = y/7 = z/3 =>(x/5)^2= (y/7)^2 = (z/3)^2 hay x^2/25 = y^2/49 =z^2 /9
x^2/25 = y^2/49 =z^2 /9 = (x^2 + y^2 - z^2) /(25+49 -9)=585/65 =9=3^2
=> (x/5)^2=3^2 =>x/5 =+-3 =>x=+-15
(y/7)^2=3^2 =>y/7 =+-3 =>y=+-21
(z/3)^2 =3^2 =>z/3 =+-3 =>z=+-9
vậy có 2 cặp (x;y;z) là: (15;21;9) và (-15;-21;-9)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{\left(x-3\right)-\left(y-1\right)}{5-4}=\frac{x-3-y+1}{1}=\frac{x-y-2}{1}=\frac{8-2}{1}=6\)
\(\Rightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)
Vậy \(\hept{\begin{cases}x=33\\y=25\end{cases}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{x-3-y+1}{5-4}=\frac{x-y-2}{1}=\frac{6}{1}=6\)
\(\Leftrightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
3 . ( 2x - y ) = 2 . ( x + y )
6x - 3y = 2x + 2y
6x - 2x = 2y + 3y
4x = 5y
Vậy, \(\frac{x}{y}=\frac{4}{5}\)
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow2\cdot\left(x+y\right)=3\cdot\left(2x-y\right)\)
\(\Rightarrow2x+2y=6x-3y\)
\(\Rightarrow2x-6x=-3y-2y\Rightarrow-4x=-5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
áp dụng tính chất của dãy tỉ số bằng nhau :
ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{42}{7}=6.\)
\(\Rightarrow\frac{x}{3}=6\Rightarrow x=18\)
\(\frac{y}{4}=6\Rightarrow y=24\)