K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguồn: Google

undefined

9 tháng 3 2017

Ta có

\(\frac{4^{n+3}+17.2^{2n}}{9^{n+1}+7.3^{2n}}=\frac{2^{2n+6}+17.2^{2n}}{3^{2n+2}+7.3^{2n}}=\frac{2^{2n}.\left(2^6+17\right)}{3^{2n}.\left(3^2+7\right)}=\left(\frac{2}{3}\right)^{2n}.\frac{81}{16}=1\)

\(\Rightarrow\left(\frac{2}{3}\right)^{2n}.\frac{3^4}{2^4}=1\Rightarrow\left(\frac{2}{3}\right)^{2n}=\left(\frac{2}{3}\right)^4\Rightarrow2n=4\Rightarrow n=2\)

19 tháng 6 2019

#)Tham khảo nhé bạn :

   https://h.vn/hoi-dap/question/221389.html

20 tháng 6 2019

Khó quá,e ms lớp 5 nên tl k đc,xl nha

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

20 tháng 9 2015

2n+1 chia hết cho n+2

=> 2n+4-3 chia hết cho n+2

Vì 2n+4 chia hết cho n+2

=> -3 chia hết cho n+2

=> n+2 thuộc Ư(-3)

=> n+2 thuộc {1; -1; 3; -3}

=> n thuộc {-1; -3; 1; -5}

20 tháng 9 2015

2n+1=2n+4-3

=> 2n+1 chia hết cho n+2 khi 3 chia hết cho n+2

mà n là số tự nhiên nên n+2 lớn hơn hoặc bằng 2

=>n+2 =3

=>n=1