K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

thì n là số chia hết cho 3(n là số tự nhiên)

12 tháng 10 2019

chia hết cho 7 mà cs cho 3 đâu

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

22 tháng 8 2017

a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)

\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)

vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)

b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)

\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\)

vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\)\(3\) (đpcm)

22 tháng 8 2017

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)

vậy ...

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)

vậy ...

17 tháng 12 2017

Xin lỗi ,

mik 

mới 

hok

lớp 6

27 tháng 10 2019

k biết thì đừng trả lời

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)

14 tháng 12 2020

ai lm đúng mk cho 2 k nha

12 tháng 8 2016

n3 - n

= n ( n2 - 1)

= ( n - 1 ) n (n + 1)

Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n

Nhớ ủg hộ mk nha pn

10 tháng 12 2016

\(2n^2+n-7\) chia hết cho n-2

<=> \(2n^2-4n+5n-10+3\) chia hết cho n-2

<=>\(2n\left(n-2\right)+5\left(n-2\right)+3\) chia hết cho n-2

<=>\(\left(n-2\right)\left(2n+5\right)+3\) chia hết cho n-2

Mà \(\left(n-2\right)\left(2n+5\right)\) chia hết cho n-2 <=> 3 chia hết cho n-2

<=>\(n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

<=>\(n\in\left\{-1;1;3;5\right\}\)

Vậy ..............