K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

28 tháng 8 2016

+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3

=> (4n + 3)2 chia 3 dư 1 (1)

+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)chia 8 dư 1 (2)

Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1

Mà 25 chia 24 dư 1

=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)

20 tháng 9 2016

\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)

n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)

=> 1 trong 3 số trên chia hết cho 2

=> A chia hết cho 2 (2)

Từ (1) => một trong 3 số trên chia hết cho 3

=> A chia hết cho 3 (3)

2 và 3 là 2 số nguyên tố cùng nhau (4)

Từ (2); (3); (4) => A chia hết cho 6 (đpcm)

20 tháng 9 2016

n- n 

= n(n2 - 1) = n(n2 - 12)

= n(n - 1)(n + 1)

Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)

=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3

=> Tích của chúng chia hết cho 6

=> n(n - 1)(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (Đpcm)

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)

Bài 8:

a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)

\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)

b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)

\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)

c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)

d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12\cdot2n=24n⋮24\)(đpcm)

12 tháng 8 2016

n3 - n

= n ( n2 - 1)

= ( n - 1 ) n (n + 1)

Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n

Nhớ ủg hộ mk nha pn

27 tháng 9 2018

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 
=-5n 
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5 
vậy n(2n-3)-2n(n+1) chia hết cho 5

k mk nhak

Thanks <3

20 tháng 8 2018

\(x\left(x-1\right)-3x+3=0\)

<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-3\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

\(3x\left(x-2\right)+10-5x=0\)

<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)

<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)

<=> \(\left(3x-5\right)\left(x-2\right)=0\)

<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

học tốt

5 tháng 8 2020

Và trong tích 4 số tự nhiên liên tiếp chắc chắn chia hết cho 3 .

=> \(n\left(n+1\right)\left(n-2\right)\left(n-1\right)\) sẽ chia hết cho cả 3 và 8

=> \(n\left(n+1\right)\left(n-2\right)\left(n-1\right)\) sẽ chia hết cho 24 .

Vậy ...