Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
M = | x - 2019 | + | x - 2018 | - 2017
M = | x - 2019 | + | x - 2018 | - 2017 \(\ge\)- 2017
Dấu " = " xảy ra \(\Leftrightarrow\)x - 2019 = 0 hoặc x - 2018 = 0
\(\Rightarrow\)x = 2019 hoặc x = 2018
Min M = - 2017 \(\Leftrightarrow\)x = 2019 hoặc x = 2018
*) Ta chứng minh bổ đề: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left|ab\right|\ge2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\) ( luôn đúng )
Dấu "=" xảy ra khi \(ab\ge0\)
Theo bài cho: M = |x-2019| + |x-2018| - 2017
=> M = |x - 2019| + |2018 - x| - 2017
Áp dụng bổ đề trên => | x - 2019 | + | 2018 - x| \(\ge\) | x - 2019 + 2018 - x |
=> | x - 2019 | + | 2018 - x | \(\ge\)1
=> | x - 2019 | + | 2018 - x | - 2017 \(\ge\)1 - 2017
=> M \(\ge\)-2016
Dấu "=" xảy ra khi ( x - 2019 ).( 2018 - x)\(\ge\)0
Ta xét 2 trường hợp:
+) Nếu \(\hept{\begin{cases}x-2019\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2019\\x\le2018\end{cases}}\)( loại )
+) Nếu \(\hept{\begin{cases}x-2019\le0\\2018-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2019\\x\ge2018\end{cases}}\)\(\Leftrightarrow2018\le x\le2019\)( thỏa mãn )
Vạy: GTNN của M = -2016 khi \(2018\le x\le2019\)
\(\left|x-1\right|+2C=\left|x-1,5\right|+\left|1-x\right|\\ \Leftrightarrow\left|x-1\right|+2C=\left|x-1,5\right|+\left|x-1\right|\\ \Rightarrow2C=\left|x-1,5\right|\ge0\\ \Rightarrow C\ge0\)
Để C=0 thì
\(\left|x-1,5\right|=0\\ \Leftrightarrow x-1,5=0\\ \Leftrightarrow x=1,5\)
Vậy...
cái này sai r mk xóa nhé
Đề full ko phải vệ,có lẽ bạn đó viết quá gần
Bài 2:
\(C=\frac{2019}{\sqrt{x}+3}\)
Vì C có tử = 2019 ko đổi
\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min
+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)
+Dấu ''='' xảy ra khi ......tự lm :))
\(\Rightarrow\)Mẫu đạt min = 3 khi x=...
\(\Rightarrow\)C max = ... khi x=....
BÀi 1:
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)
+Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=2019\)
+Vậy \(B_{min}=2\) khi \(x=2019\)