K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

22 tháng 10 2021

a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)

d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)

22 tháng 10 2021

\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)

22 tháng 7 2017

a)

\(3:\left(\dfrac{9}{4}\right)=\dfrac{3}{4}:\left(6.x\right)\\ \Rightarrow3.6.x=\dfrac{3}{4}.\dfrac{9}{4}\\ x=\dfrac{3}{4}.\dfrac{9}{4}.\dfrac{1}{3}.\dfrac{1}{6}\\ x=\dfrac{3}{4.4.2}\\ x=\dfrac{3}{32}\)

b)

\(4,5:0,3=\left(5.0,09\right):\left(0,01.x\right)\\ 0,01.x.4,5=5.0,09.0,3\\ x=5.\dfrac{9}{100}.\dfrac{3}{10}.100.\dfrac{10}{45}\\ x=3\)

d)

\(\left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}:\dfrac{2}{25}\\ \left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}.\dfrac{25}{2}\\ x:\dfrac{7}{4}=\dfrac{25}{2}:\dfrac{1}{9}\\ x=\dfrac{25}{2}.9.\dfrac{7}{4}\\ x=\dfrac{1575}{8}\\ x=196\dfrac{7}{8}\)

e)

\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\\ -x.x=-2.\dfrac{8}{25}\\ -x^2=-\dfrac{16}{25}=-\dfrac{4^2}{5^2}\\ -x^2=-\left(\dfrac{4}{5}\right)^2\\ \Rightarrow x=\dfrac{4}{5}\)

Chúc bạn học tốt haha

16 tháng 1 2018

Bạn tham kkhảo bài này nha!

  A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2 

minA = 2 
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7 

B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4 

B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4 

minB = -1/4 
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4 

C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥ 

≥ |x² + x + 1 + 12 - x² - x| = |13| = 13 

minC = 13 

đạt khi (x² + x +1) và (12 - x² - x) cùng dấu 
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=> 
{x² + x + 1 ≥ 0 
{x² + x -12 ≤ 0 
<=> 
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3 
tóm lại: 
minC = 13 đạt khi -4 ≤ x ≤ 3 

16 tháng 1 2018

cam on ban nha

13 tháng 12 2023

\(a,121-\left(115+x\right)=3x-\left(25-9-5x\right)-8\\ 121-115-x=3x-25+9+5x-8\\ 6-x=8x-24\\ 8x+x=-24-6\\ 9x=-30\\ x=-\dfrac{30}{9}=-\dfrac{10}{3}\\ ----\\ b,2^{x+2}.3^{x+1}.5^x=10800\\ \left(2.3.5\right)^x.2^2.3=10800\\ 30^x.12=10800\\ 30^x=\dfrac{10800}{12}=900=30^2\\ Vậy:x=2\)

17 tháng 9 2019

Bài 1:

a) \(\left|x-2\right|=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\left[{}\begin{matrix}x=5+2\\x=\left(-5\right)+2\end{matrix}\right.\)\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{7;-3\right\}.\)

b) \(\left|x-1\right|>4\)

\(\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\)\(\left[{}\begin{matrix}x>5\left(TM\right)\\x< -3\left(TM\right)\end{matrix}\right.\)

Vậy \(x>5\) hoặc \(x< -3\) thì \(\left|x-1\right|>4.\)

Mình chỉ làm bài 1 thôi nhé.

Chúc bạn học tốt!

17 tháng 9 2019

bài 2

\(A=\left|x-\frac{1}{3}\right|+2019\)

Có: \(\left|x-\frac{1}{3}\right|\ge0với\forall x\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+2019\ge2019\\ \Leftrightarrow A\ge2019\)

Dấu "=" xảy ra khi: \(\left|x-\frac{1}{3}\right|=0\Leftrightarrow x=\frac{1}{3} \)

Vậy \(A_{min}=2019\) khi \(x=\frac{1}{3}\)

\(B=2020.\left|3x-1\right|\)

Có: \(\left|3x-1\right|\ge0với\forall x\)

\(\Rightarrow2020.\left|3x-1\right|\ge0\)

\(\Leftrightarrow B\ge0\)

Dấu "=" xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)

Vậy \(B_{min}=0\) khi \(x=\frac{1}{3}\)

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

9 tháng 7 2019

(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)

1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2

2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)

https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)

3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=> 

4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
 

9 tháng 7 2019

1, Ta có: (x - 1)2000 \(\ge\)\(\forall\)x

|y - 2|2000 \(\ge\)\(\forall\)y

=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y

hay A \(\ge\)2019 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Amin = 2019 tại  x = 1 và y = 2

2) Ta có: |x + 3| \(\ge\)\(\forall\)x

|x - y + 4| \(\ge\) 0 \(\forall\)x, y

=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10  \(\forall\)x,y

hay B \(\ge\)-10 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

vậy Bmin = -10 tại x = -3  và y = 1