K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(E=-3x^2-6x+5\)

\(=-3\left(x^2+2x-\frac{5}{3}\right)\)

\(=-3\left(x^2+2x+1\right)+8\)

\(=-3\left(x+1\right)^2+8\le8\forall x\)

Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

28 tháng 8 2021

\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)

\(=-3\left(x+1\right)^2+8\le8\)

Dấu ''='' xảy ra khi x = -1

Vậy GTLN của E bằng 8 tại x = -1 

19 tháng 10 2018

\(5-3x^2+6x=-3x^2+6x+5=-3\left(x^2-2x-5\right)\)

\(=-3\left(x^2-2x+1-6\right)\)

\(=-3\left(x^2-2x+1\right)+18\)

\(=-3\left(x-1\right)^2+18\le18\forall x\)

Dấu = xảy ra khi: \(-3\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy : GTLN là 18 tại x = 1

20 tháng 10 2018

Nguyễn Hoàng Khánh Dương sai rồi nha bạn! Bạn thay x = 1 vào biểu thức xem có ra được giá trị MAX = 18 không???

Gọi biểu thức trên là A.Ta có: \(A=5-3x^2+6x=-3x^2+6x+5\)

\(=-3x^2+6x-3+8\)

\(=-3\left(x^2-2x+1\right)+8\)

\(=-3\left(x-1\right)^2+8\le8\) (do \(-3\left(x-1\right)^2\le0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(A_{max}=8\Leftrightarrow x=1\)

28 tháng 8 2021

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3\)

\(=-3\left(x^2+\frac{14}{3}x+\frac{49}{9}\right)+\frac{40}{3}\)

\(=-3\left(x+\frac{7}{3}\right)^2\le0\forall x\) 

Dau '' = '' xay ra \(\Leftrightarrow x=\frac{-7}{3}\)

28 tháng 8 2021

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3=-3\left(x^2+\frac{14}{3}x\right)-3\)

\(=-3\left(x^2+2.\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}\right)-3\)

\(=-3\left(x+\frac{7}{3}\right)^2+\frac{40}{3}\le\frac{40}{3}\)

Dấu ''='' xảy ra khi x = -7/3 

Vậy GTLN của F bằng 40/3 tại x = -7/3 

25 tháng 6 2019

1, Ta có: \(A=3x^2+8x+9=3\left(x^2+\frac{8}{3}x+3\right)=3\left(x^2+\frac{8}{3}x+\frac{16}{9}+\frac{11}{9}\right)\)

\(=3\left(x+\frac{4}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall x\)

=> Min A = 11/3 tại x = -4/3

2, Ta có: \(A=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)\)

\(=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\forall x\)

=> Max A = 15/2 tại x = 3/2

=.= hk tốt!!

25 tháng 6 2019

Cảm ơn

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

1 tháng 4 2018

D = \(-\dfrac{5}{x^2-4x+7}\)

Vì: x2 - 4x + 7

= x2 - 4x + 4 + 3

= (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x

\(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x

Dấu"=" xảy ra khi:

x - 2 = 0

\(\Rightarrow\) x = 2

Vậy.............

E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

Ta có:

\(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

= \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)

= 2 - \(\dfrac{4}{x^2+2x+4}\)

Vì:

x2 + 2x + 4

= x2 + 2x + 1 + 3

= (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x

\(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x

Dấu "=" xảy ra khi:

x + 1 = 0

\(\Rightarrow\) x = -1

Vậy...............

F = \(\dfrac{6x+8}{x^2+1}\)

= \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x

Dấu "=" xảy ra khi:

(x + 3)2 = 0

\(\Rightarrow\) x + 3 = 0

\(\Rightarrow\) x = -3

Vậy.....................

2 tháng 4 2018

Cảm ơn bạn nha🙂

31 tháng 5 2021

\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x

\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)

\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)

\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)

\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)

31 tháng 5 2021

\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x

\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)

\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)

\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)

\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)

27 tháng 2 2022

\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)

\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)

\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)

\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)

\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)

-Đặt \(a=\dfrac{1}{x+2}\) thì:

\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)

\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)

\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)

27 tháng 2 2022

-Kết hợp phương pháp nhóm hạng tử với đặt ẩn phụ luôn. 

18 tháng 7 2017

A = 3 - 2(3x+1)

    = 3 - 6x -2

    = 1 - 6x

max A = 1 khi x = 0

NV
17 tháng 8 2021

\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)

\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)

\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)

\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)

\(E_{max}=24\) khi \(x=-3\)