K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

ĐKXĐ :\(x\ge0\)

Mẫu :\(5x-3\sqrt{x}+8\)

\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)

\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)

\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )

\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)

\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)

Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)

\(\Rightarrow A\le\frac{20}{151}\)

Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)

Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)

6 tháng 11 2019

\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0

Đặt \(\sqrt{x}=t\)(\(t\ge0\))

Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)

\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)

\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)

\(\Leftrightarrow151A^2-20A\le0\)

\(\Leftrightarrow A\left(151A-20\right)\le0\)

\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)

Vậy MAXA=20/151.Dấu "=" xảy ra khi

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)

28 tháng 10 2018

ĐKXĐ : \(x\ge0\)

\(A=\frac{1}{5x+3\sqrt{x}+8}\le\frac{1}{5.0+3\sqrt{0}+8}=\frac{1}{8}\)

Dấu "=" xảy ra <=> x = 0

Vậy ...

1 tháng 1 2019

ĐK: x > 0 

Vì x > 0

nên \(5x+3\sqrt{x}+8\ge0+0+8=0\)

\(\Rightarrow\frac{1}{5x+3\sqrt{x}+8}\le\frac{1}{8}\)

Dấu "='' <=> x = 0

4 tháng 11 2019

ai đó giúp toi đi aaa

ĐK: x>0, 5x-3\(\sqrt{x}\)+8≠ 0

+) 5x-3\(\sqrt{x}\)+8 <0 thì A<0

+)5x-3\(\sqrt{x}\)+8>0, ta có:

\(\frac{1}{5x-3\sqrt{x}+8}\)  lớn nhất khi và chỉ khi \(5x-3\sqrt{x}+8\)bé nhất

5x-3\(\sqrt{x}\)+8 ≥ 3/10 ∀x

⇒ Min5x-3\(\sqrt{x}\)+8=3/10

⇒ GTLN của A là  1: 3/10=10/3

Sai thì thôi :v

NV
4 tháng 11 2019

ĐKXĐ: ...

\(A=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{10}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)

\(A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)

NV
15 tháng 10 2019

\(A=\frac{1}{5x-3\sqrt{x}+8}=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)

\(\Rightarrow A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)

Bài 2:

gọi thời gian chảy riêng từng vòi đầy bể lần lượt là x(giờ) và y(giờ)

(Điều kiện: x>0 và y>0)

Trong 1h, vòi thứ nhất chảy được \(\dfrac{1}{x}\left(bể\right)\)

Trong 1h, vòi thứ hai chảy được \(\dfrac{1}{y}\left(bể\right)\)

TRong 1h, hai vòi chảy được \(\dfrac{1}{4}\left(bể\right)\)

=>\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)

Trong 10h, vòi thứ nhất chảy được \(\dfrac{10}{x}\left(bể\right)\)

Nếu mở vòi thứ nhất chảy trong 10 giờ rồi khóa lại và mở vòi thứ hai chảy trong 1 giờ nữa thì đầy bể nên ta có:

\(\dfrac{10}{x}+\dfrac{1}{y}=1\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{10}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{x}=-\dfrac{3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=12\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\left(nhận\right)\)

Vậy: Thời gian để vòi một chảy một mình đầy bể là 12 giờ

Thời gian để vòi thứ hai chảy một mình đầy bể là 6 giờ

 

5 tháng 3 2018

ĐK:\(x\in R\)

\(\frac{5}{x^2-2x+2}-\frac{8}{x^2-2x+5}=3\)

\(\Leftrightarrow-\frac{3x^4-12x^3+36x^2-48x+21}{\left(x^2-2x+2\right)\left(x^2-2x+5\right)}=0\)

\(\Leftrightarrow\frac{-3\left(x-1\right)^2\left(x^2-2x+7\right)}{\left(x^2-2x+2\right)\left(x^2-2x+5\right)}=0\)

\(\Rightarrow-3\left(x-1\right)^2\left(x^2-2x+7\right)=0\)

(vì \(\hept{\begin{cases}x^2-2x+2\\x^2-2x+5\end{cases}}>0\forall x\))

\(\Leftrightarrow\left(x-1\right)^2=0\) \(\left(x^2-2x+7>0\forall x\right)\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Cảm ơn đã theo dõi, 1 h= ủng hộ, kb để gắn kết tình bạn ^^

6 tháng 3 2018

Cảm ơn nhiều nha.

26 tháng 10 2021

Áp dụng BĐT cosi:

\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)

14 tháng 7 2017

\(\left(1\right)< =>-3\left(x-1\right)\left(x+1\right)\left(3x^2-8x-4\right)=0=>\orbr{\begin{cases}x=1\\x=\frac{4-2\sqrt{7}}{3};\frac{4+2\sqrt{7}}{3}\end{cases}.}\)
 

14 tháng 7 2017

\(A=3+\frac{\sqrt{5x+1}}{7x+3}=3+\frac{\sqrt{5x+1}}{\frac{7}{5}\left(5x+1\right)+\frac{8}{5}}=3+\frac{1}{\frac{1}{5}\left(7\sqrt{5x+1}+\frac{8}{\sqrt{5x+1}}\right)}\le3+\frac{1}{\frac{1}{5}2\sqrt{7.8}}=...\)