Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A=9x^2+18xy-12x+13y^2-24y+5}\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2-12x+18xy-12y\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y-2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}3x+3y-2=0\\2y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=1,5\end{cases}}}\)
\(a,x^2+12x+39=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu = xảy ra \(\Leftrightarrow x+6=0\)
\(\Leftrightarrow x=-6\)
Vậy ...
\(b,9x^2-12x=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu = xảy ra \(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy ...
Trả lời:
a, \(x^2+12x+39=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu "=" xảy ra khi x + 6 = 0 <=> x = - 6
Vậy GTNN của biểu thức bằng 3 khi x = - 6
b, \(9x^2-12x=\left(3x\right)^2-2.3x.2+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu "=" xảy ra khi 3x - 2 = 0 <=> x = 2/3
Vậy GTNN của biểu thức bằng - 4 khi x = 2/3
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=5x^2+9y^2-12xy+24x-48y+81\)
\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)
\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)
\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)
\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)
\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)
\(\Rightarrow A_{min}=1\)
a) \(2x-x^2-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(-9x^2+24x-18=-\left(9x^2-24x+16\right)-2\)
\(=-\left(3x-4\right)^2-2\le-2\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{4}{3}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
A=9x^2+18xy-12x+13y^2-24y+5
\(=\left(3x\right)^2+2.3.3xy-2.3x.2+9y^2+4y^2-12y-12y+4+9-8\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2+2.3x.3y+2.3x.2+2.3y.2\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y+2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}\left(3x+3y+2\right)^2=0\\\left(2y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+3y+2=0\\2y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6,5\\y=1,5\end{cases}}}\)