K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a) \(2x-x^2-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

b) \(-9x^2+24x-18=-\left(9x^2-24x+16\right)-2\)

\(=-\left(3x-4\right)^2-2\le-2\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{4}{3}\)

11 tháng 10 2021

a) \(2x-x^2-4\)

\(-x^2+2x-4\)

\(-\left(x^2-2x+1\right)-3\)

 \(-\left(x-1\right)^2-3\text{ }\text{≤}-3\)

Min =-3 ⇔\(-\left(x-1\right)^2=0\)

               ⇔\(x-1=0\)

               ⇔\(x=1\)

15 tháng 7 2021

a, \(A=4-2x^2\le4\)

Dấu ''='' xảy ra khi x = 0 

Vậy GTLN A là 4 khi x = 0 

b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)

\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5

Vậy GTLN B là 20 khi x = 5 

c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)

\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)

Vậy GTLN C là -17/7 khi x = 1/2 

d, tương tự 

12 tháng 10 2020

a) 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x

Dấu "=" xảy ra khi x = 1

=> GTLN của bthuc = -3 <=> x = 1

b) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x

Dấu "=" xảy ra khi x = -2

=> GTLN của bthuc = 4 <=> x = -2

c) -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 17 = -9( x - 4/3 )2 - 17 ≤ -17 ∀ x

Dấu "=" xảy ra khi x = 4/3

=> GTLN của bthuc = -17 <=> x = 4/3

d) 4x - x2 - 1 = -( x2 - 4x + 4 ) + 3 = -( x - 2 )2 + 3 ≤ 3 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của bthuc = 3 <=> x = 2

e) 5 - x2 + 2x - 4y2 - 4y

= -( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 ) + 7

= -( x - 1 )2 - ( 2y + 1 )2 + 7 ≤ 7 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = -1/2

=> GTLN của bthuc = 7 <=> x = 1 ; y = -1/2

26 tháng 7 2020

a, Ta có : \(-x^2+2x-1-3\)

\(=-\left(x-1\right)^2-3\)

Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)

=> \(-\left(x-1\right)^2-3\le-3\forall x\)

Vậy Max = -3 <=> x = 1 .

b, Ta có : \(-x^2-4x-4+4\)

\(=-\left(x+2\right)^2+4\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)

=> \(-\left(x+2\right)^2+4\le4\forall x\)

Vậy Max = 4 <=> x = -2 .

c, Ta có : \(-9x^2+24x-16-2\)

\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)

\(=-9\left(x-\frac{4}{3}\right)^2-2\)

Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)

=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)

Vậy Max = -2 <=> x = \(\frac{4}{3}\) .

d, Ta có : \(-x^2+4x-4+3\)

\(=-\left(x-2\right)^2+3\)

Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2+3\le3\forall x\)

Vậy Max = 3 <=> x = 2 .

e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)

\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)

\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)

=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)

Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

26 tháng 7 2020
https://i.imgur.com/0AA3SFZ.jpg
13 tháng 6 2016

\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)

\(=-\left(3x-4\right)^2-2\le-2\)

Các câu sau tương tự.

16 tháng 7 2021

mng giúp e với ặk

30 tháng 9 2018

a)  

\(B=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\)

Nhận thấy:   \(\left(2x+1\right)^2\ge0\)

=>   \(\left(2x+1\right)^2+1>0\)

hay B luôn dương

7 tháng 7 2019

a)

A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)

b)

C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1

25 tháng 6 2019

TL:

a,\(-\left(x^2-2x+1\right)+1\)1

\(-\left(x-1\right)^2+1\) \(\le\) 1

=>giá trị lớn nhất của biểu thức là 1

vậy........

b,\(-\left(9x^2+6x+1\right)+20\) 

   \(-\left(3x+1\right)^2+20\) 

  \(\le20\) 

=>giá trị lớn nhất cuar biểu thức là 20

vậy.........

hc tốt

Dấu của hạng tử bậc là dấu âm nên chỉ tìm được giá trị lớn nhất thôi nhé.

a) A=2xx2A=2xx2+11A=1(x22x+1)A=1(x1)2Do (x1)20xA=1(x1)21x Du “=” xy ra khi: (x1)2=0x1=0x=1Vy MaxA=1 khi x=1

b) B=196x9x2B=2016x9x2B=20(1+6x+9x2)B=20(1+3x)2Do (1+3x)20xB=20(1+3x)220xDu "=" xy ra khi:(1+3x)2=01+3x=03x=1x=13Vy MaxB=20 khi x=13