K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(xy=6;yz=10;zx=15\)

Ta có: \(\left(xyz\right)^2=6.10.15\)

\(\Rightarrow\left(xyz\right)^2=900\)

\(\Rightarrow xyz=\pm30.\)

TH1: \(xyz=30.\)

\(\Rightarrow\left\{{}\begin{matrix}x=30:10=3\\y=30:15=2\\z=30:6=5\end{matrix}\right.\)

TH2: \(xyz=-30.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-30\right):10=-3\\y=\left(-30\right):15=-2\\z=\left(-30\right):6=-5\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(3;2;5\right),\left(-3;-2;-5\right).\)

Chúc bạn học tốt!

4 tháng 10 2019

Dễ thấy x, y, z khác 0. Ta có:

\(\frac{x}{z}=\frac{xy}{yz}=\frac{6}{10}=\frac{3}{5}\Rightarrow\frac{x}{z}.xz=\frac{3}{5}.10=9\Rightarrow x=3\text{hoặc }x=-3\)

Với x = 3 suy ra y = 2; z = 5

Với x = -3 suy ra y =-2; z = -5

P/s: nãy làm thiếu nên giờ đăng lại.

6 tháng 7 2015

Nhân từng vế của ba đẳng thức đã cho ta được :

           xy . yz . zx = \(\frac{13}{15}.\frac{11}{3}.\left(-\frac{3}{13}\right)\)

\(\Leftrightarrow\) (xyz)2 = \(-\frac{11}{15}\)  (1)

  Đẳng thức (1) không xảy ra vì (xyz)2 > 0.

Vậy không tồn tại ba số hữu tỉ x,y,z thỏa mãn điều kiện đề bài.

22 tháng 11 2022

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{xy}{4}=\dfrac{yz}{6}=\dfrac{xz}{10}=\dfrac{xy+yz+xz}{4+6+10}=\dfrac{60}{20}=3\)

=>xy=12; yz=18; xz=30

=>xyz=căn(12*18*30)=36căn 5

=>\(z=3\sqrt{5};x=2\sqrt{5};y=\dfrac{6\sqrt{5}}{5}\)

16 tháng 3 2017

Xy=2; yz=3; zx=6  => x=2y

=> y=1; x=2; z=3

3 tháng 7 2016

Vào câu hỏi tương tự.

3 tháng 7 2016

GIẢI GIÚP MÌNH VỚI CÁC BẠN 

24 tháng 7 2015

Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)

Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)

Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)

=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)

=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)

=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)

(Tương tự trên nha ^^ )

24 tháng 7 2015

=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)

=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)

=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)

=>\(x.y.z=\frac{1}{5}\)

=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)

=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)

=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)

21 tháng 11 2018

áp dụng tính chất dãy tỉ số bằng nhau mà làm

22 tháng 11 2018

theo tính chất dãy tỉ số = ta có ;

xy\4+yz/6+zx/10=xy+yz+zx/4+6+10=60/16=3,75

do đó: xy/4=3,75 suy ra xy=3,75.4=15

         yz/6=3,75 suy ra yz=3,75.6=22,5

         zx/10=3,75 suy ra zx=3,75.10=37,5

8 tháng 3 2020

2x=3y=4z =k

suy ra x=k/2; y=k/3, z=k/4

mà xy + yz + zx = 6

suy ra \(\frac{k^2}{6}+\frac{k^2}{12}+\frac{k^2}{8}=6\Rightarrow k^2.\frac{3}{8}=6\Rightarrow k^2=16\Rightarrow k\in\left\{4;-4\right\}\)

Với k = 4 suy ra x =2; y=4/3; z=1

Với k =- 4 suy ra x =-2; y=-4/3; z=-1

8 tháng 3 2020

Ta có :

\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

                   \(\Leftrightarrow\frac{x}{6}=\frac{y}{4}\)

\(3y=4z\Leftrightarrow\frac{z}{3}=\frac{y}{4}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Ta có :

\(\left(\frac{x}{6}\right)^2=\frac{x}{6}.\frac{x}{6}=\frac{x}{6}.\frac{y}{4}=\frac{y}{4}.\frac{z}{3}=\frac{z}{3}.\frac{y}{6}\)

\(\Leftrightarrow\)\(\left(\frac{x}{6}\right)^2\)\(=\frac{xy}{24}=\frac{yz}{12}=\frac{zx}{18}=\frac{xy+yz+zx}{24+12+18}=\frac{1}{9}\)\(\left(\text{T/c dãy tỉ số bằng nhau}\right)\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\pm\frac{1}{3}\)

7 tháng 2 2021

giúp mình với nhé!

22 tháng 2 2019

Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0

Suy ra x;y;z khác 0

Đặt \(2=a;4=b;6=c\) khi đó ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)

Mà \(x;y;z\ne0\) suy ra:

\(ayz+bxz=bxz+xcy=cxy+ayz\)

\(\Rightarrow az=cx;bx=ay\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{k}{2}=k^2\)

\(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)

Thay số vào,ta được:

\(x=1;y=2;z=3\)