Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: xy=2/3 và yz=0,6
nên xy*yz=2/3*0,6
xz*y2=0,4
mà xz=0,625
nên 0,625*y2=0,4
y2=0,4/0,625
y2=0,64 nên y=0,8 hoặc y=-0,8
*)nếu y=0,8
thì x=2/3:0,8=5/6
thì z=0,6:0,8=0,75
*)Nếu y=-0,8
thì x=2/3:(-0,8)=-5/6
thì z=0,6:(-0,8)=-0,75
a, cộng vế vs vế của 3 biểu thức ta có :
\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(2\left(x+y+z\right)=-\frac{5}{12}\)
\(x+y+z=-\frac{5}{24}\)
\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)
Trả lời:
\(N=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{a\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{1\cdot2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(N=\frac{\frac{1}{2}-\frac{1}{\left(a+1\right)\left(a+2\right)}}{2}\)
áp dụng t/c dãy tỉ số = nhau ,cộng xy+yz+zx vào =>rút ra xy;yz;zx rồi nhân từng vế các đẳng thức =>suy ra x,y,z(mk lười làm)
Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)
Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)
Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)
=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)
=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)
=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)
Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)
(Tương tự trên nha ^^ )
=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)
=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)
=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)
=>\(x.y.z=\frac{1}{5}\)
=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)
=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)
=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)
\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)
\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)
Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Với \(x=2\Rightarrow y=1;z=3\)
Với \(x=-2\Rightarrow y=-1;z=-3\)
Vậy ....
Vào câu hỏi tương tự.
GIẢI GIÚP MÌNH VỚI CÁC BẠN