Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)
\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)
\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)
Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Với \(x=2\Rightarrow y=1;z=3\)
Với \(x=-2\Rightarrow y=-1;z=-3\)
Vậy ....
b. Ta có : xy.yz.zx=3/5.4/5.3/4
=) x^2.y^2.z^2=9/25
(=) (x.y.z)^2 =9/25
mà (x.y.z)^2 =(3/5)^2
(=) x.y.z =3/5
*Ta có xy=3/5
=) xyz =3/5
=)3/5.z =3/5
=) z =3/5:3/5
(=) z =1
*Ta có: yz=4/5
=) xyz =3/5
=) x.4/5=3/5
=) x =3/5:4/5
=) x = 3/4
*Ta có: zx=3/4
=) xyz =3/5
(=) xzy =3/5
=)3/4.y=3/5
=) y =3/5:3/4
=) y =4/5
Vậy x=3/4, y=4/5, z=1
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{4}=\frac{y-2}{3}=\frac{2x-2+5y-10}{2.4+5.3}=\frac{81-12}{23}=\frac{69}{23}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{4}=2\Rightarrow x=9\\\frac{y-2}{3}=2\Rightarrow y=8\end{cases}}\)
Vậy ...
Ta có: \(xy.yz.zx=x^2.y^2.z^2=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}=\frac{9}{25}\)
Do đó: \(xyz=\sqrt{\frac{9}{25}}=\frac{3}{5}=xy\)(1) .Từ (1) ta có: xyz = xy suy ra z = 1 (áp dụng tính chất số nào nhân với 1 cũng bằng chính nó) (2)
Thế z = 1 vào: \(xy=\frac{3}{5};yz=\frac{4}{5}\). Ta có: \(xy=\frac{3}{5};y=\frac{4}{5}\). Được \(y=\frac{4}{5}\) (3)
Thế \(y=\frac{4}{5}\)vào \(xy=\frac{3}{5}\). Ta có: \(\frac{4}{5}x=\frac{3}{5}\Leftrightarrow x=\frac{\left(\frac{3}{5}\right)}{\left(\frac{4}{5}\right)}=\frac{3}{4}\)(4)
Từ (2) ; (3) và (4) ta có: \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{4}{5}\\z=1\end{cases}}\)
Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)
\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)
\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)
Thay x vào z ta có:
\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)
\(z=-\frac{45y}{169}\)
Thay y vào z ta có:
\(z=\frac{-45.\frac{1}{3}z}{169}\)
\(z=-\frac{15}{169}z\)( vô lý )
\(\Rightarrow\)z không có giá trị
\(\Rightarrow\)x;y không có giá trị
đpcm
Giải :
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = 13/15 .11/3 . ( - 3/13 )
\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )
Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)
Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài
Ta có: xy.yz.zx = \(\frac{1}{3}\times\frac{-2}{5}\times\frac{-3}{10}=\frac{1}{25}\)=> \(\left(xyz\right)^2=\frac{1}{25}\)
Mà \(\frac{1}{25}=\left(\frac{1}{5}\right)^2=\left(-\frac{1}{5}\right)^2\)
Nếu \(\left(xyz\right)^2=\left(\frac{1}{5}\right)^2\Rightarrow xyz=\frac{1}{5}\)
=> \(x=\frac{1}{5}:yz=\frac{1}{5}:\left(-\frac{2}{5}\right)=-\frac{1}{2}\)
=> \(y=\frac{1}{5}:xz=\frac{1}{5}:\left(-\frac{3}{10}\right)=-\frac{2}{3}\)
=> \(z=\frac{1}{5}:xy=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)
Nếu \(\left(xyz\right)^2=\left(-\frac{1}{5}\right)^2\Rightarrow xyz=-\frac{1}{5}\)
(Tương tự trên nha ^^ )
=>\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{6}{150}=\frac{1}{25}\)
=>\(x^2.y^2.z^2=\frac{1^2}{5^2}\)
=>\(\left(x.y.z\right)^2=\left(\frac{1}{5}\right)^2\)
=>\(x.y.z=\frac{1}{5}\)
=>\(x=\frac{1}{5}:\frac{-2}{5}=\frac{-1}{2}\)
=>\(y=\frac{1}{5}:\frac{-3}{10}=\frac{-2}{3}\)
=>\(z=\frac{1}{5}:\frac{1}{3}=\frac{3}{5}\)