Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5
=> xy + yz + zx = 11
=> xy = 2 ; yz = 6 ; zx = 3
=>( xyz)2 = 36 => xyz = \(\pm\)6
+ nếu xyz = 6 thì : x = 1 ; y = 2; z = 3
+ nếu xyz = -6 thì : x = -1 ; y = -2 ; z = -3
\(xy+yz=8;yz+zx=9;zx+xy=5\)
\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)
\(\Leftrightarrow2xy+2yz+2xz=22\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)
\(\Leftrightarrow xy+yz+xz=11\)
\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)
\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)
TH1: \(xyz=6\)
\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)
TH2: \(xyz=-6\)
\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)
Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)
x=6
y=8
z=10
Xin lỗi bạn vì mình không biết cách để tính theo cách tích ở tử.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{xy}{12}=\dfrac{yz}{20}=\dfrac{zx}{15}=\dfrac{xy+yz+zx}{12+20+15}=\dfrac{188}{47}=4\)
\(\Rightarrow\left\{{}\begin{matrix}xy=4.12\\yz=4.20\\zx=4.15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}xy=48\\yz=80\\zx=60\end{matrix}\right.\)
\(\Rightarrow x^2.y^2.z^2=48.80.60\)
\(\Rightarrow\left(xyz\right)^2=480^2\)
\(\Rightarrow xyz=480\)
\(\Rightarrow\left\{{}\begin{matrix}x=480:80\\y=480:60\\z=480:48\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)
Vậy...
\(xy=6;yz=10;zx=15\)
Ta có: \(\left(xyz\right)^2=6.10.15\)
\(\Rightarrow\left(xyz\right)^2=900\)
\(\Rightarrow xyz=\pm30.\)
TH1: \(xyz=30.\)
\(\Rightarrow\left\{{}\begin{matrix}x=30:10=3\\y=30:15=2\\z=30:6=5\end{matrix}\right.\)
TH2: \(xyz=-30.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-30\right):10=-3\\y=\left(-30\right):15=-2\\z=\left(-30\right):6=-5\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(3;2;5\right),\left(-3;-2;-5\right).\)
Chúc bạn học tốt!
= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\)
a.
\(\left(xy\right).\left(yz\right).\left(xz\right)=3.6.18\\ \Rightarrow\left(x.y.z\right)^2=324\\ \Rightarrow\left[{}\begin{matrix}x.y.z=18\\x.y.z=-18\end{matrix}\right.\)
Nếu x.y.z=18
\(\Rightarrow\left[{}\begin{matrix}z=\left(xyz\right):\left(xy\right)=18:3=6\\x=\left(xyz\right):\left(yz\right)=18:6=3\\y=\left(xyz\right):\left(xz\right)=18:18=1\end{matrix}\right.\)
Nếu x.y.z = -18
\(\Rightarrow\left\{{}\begin{matrix}z=-6\\x=-3\\y=-1\end{matrix}\right.\)
Vậy...
a)Ta có:xy.yz.xz=3.6.18
x^2.y^2.z^2=324
(x.y.z)^2=18^2
x.y.z=18
Do đó:x=18:6=3
y=18:18=1
z=18:3=6
b)Ta có:xy.yz.xz=1.8.18
x^2.y^2.z62=144
(x.y.z)^2=12^2
x.y.z=12
Do đó:x=12:8=1,5
y=12:18=2/3
z=12:1=12
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{xy}{4}=\dfrac{yz}{6}=\dfrac{xz}{10}=\dfrac{xy+yz+xz}{4+6+10}=\dfrac{60}{20}=3\)
=>xy=12; yz=18; xz=30
=>xyz=căn(12*18*30)=36căn 5
=>\(z=3\sqrt{5};x=2\sqrt{5};y=\dfrac{6\sqrt{5}}{5}\)