Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < ; có nghiệm kép khi m = và vô nghiệm khi m >
a) Phương trình x 2 – 2 ( m – 1 ) x + m 2 = 0 (1)
Có a = 1; b’ = -(m – 1); c = m 2
b) Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < ; có nghiệm kép khi m = và vô nghiệm khi m >
a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)
Vậy pt luôn có 2 nghiệm
b, để pt có 2 nghiệm pb khi m khác 1
c, để pt có nghiệm kép khi m = 1
d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)
Ta có \(x_1-2x_2=0\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)
Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)
b)
Phương trình có nghiệm kép khi và chỉ khi
Δ = 0 ⇔ 4 m - 1 2 = 0 ⇔ m = 1
Khi đó nghiệm kép của phương trình là:
x = (-b)/2a = 2m/2 = m = 1
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
a: Thay x=-1 vào (6), ta được:
1+2m+m+6=0
=>3m+7=0
=>m=-7/3
x1+x2=-2m/1=-2*7/3=-14/3
=>x2=-14/3-x1=-14/3+1=-11/3
b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)
Để phương trình có nghiệm kép thì 3m+6=0
=>m=-2
Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0
=>x^2-4x+4=0
=>x=2
ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi
\(a,\)Để pt \(x^2+\left(2m+1\right)x+m\left(m-1\right)=0\) có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-m\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4m=0\)
\(\Leftrightarrow8m+1=0\)
\(\Leftrightarrow m=-\dfrac{1}{8}\)
Thay \(m=-\dfrac{1}{8}\) vào pt
\(\Rightarrow x^2+\left[2.\left(-\dfrac{1}{8}\right)+1\right]x-\dfrac{1}{8}\left(-\dfrac{1}{8}-1\right)=0\)
\(\Rightarrow x^2+\dfrac{3}{4}x+\dfrac{9}{64}=0\)
\(\Rightarrow x=-\dfrac{3}{8}\)
\(b,\) Thay \(m=1\) vào pt :
\(\Rightarrow x^2+\left(2.1+1\right)x+1\left(1-1\right)=0\)
\(\Rightarrow x^2+3x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Để phương trình có nghiệm kép thì 6^2-4(m-2)=0
=>4(m-2)=36
=>m-2=9
=>m=11
=>x^2+6x+9=0
=>x=-3
a/ Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)
\(\Leftrightarrow13-8m>0\)
\(\Leftrightarrow m< \frac{13}{8}\)
b/ Để phương trình có nghiệm kép thì
\(\Delta=1^2-4.m=0\)
\(\Leftrightarrow m=0,25\)
Nghiệm kép đó là: \(x=-0,5\)
b) (x+1/2)^2=1/4-m=> m=1/4