K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

a/ Để phương trình có 2 nghiệm phân biệt thì

\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)

\(\Leftrightarrow13-8m>0\)

\(\Leftrightarrow m< \frac{13}{8}\)

b/ Để phương trình có nghiệm kép thì

\(\Delta=1^2-4.m=0\)

\(\Leftrightarrow m=0,25\)

Nghiệm kép đó là: \(x=-0,5\)

7 tháng 3 2017

b) (x+1/2)^2=1/4-m=> m=1/4

3 tháng 1 2020

Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

30 tháng 3 2018

a) Phương trình  x 2   –   2 ( m   –   1 ) x   +   m 2   =   0  (1)

Có a = 1; b’ = -(m – 1);  c   =   m 2

b) Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)

19 tháng 6 2017

b)

Phương trình có nghiệm kép khi và chỉ khi

Δ = 0 ⇔ 4 m - 1 2  = 0 ⇔ m = 1

Khi đó nghiệm kép của phương trình là:

x = (-b)/2a = 2m/2 = m = 1

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

a: Thay x=-1 vào (6), ta được:

1+2m+m+6=0

=>3m+7=0

=>m=-7/3

x1+x2=-2m/1=-2*7/3=-14/3

=>x2=-14/3-x1=-14/3+1=-11/3

b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)

Để phương trình có nghiệm kép thì 3m+6=0

=>m=-2

Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0

=>x^2-4x+4=0

=>x=2

29 tháng 1 2023

ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi

30 tháng 3 2023

\(a,\)Để pt \(x^2+\left(2m+1\right)x+m\left(m-1\right)=0\) có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-m\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+4m=0\)

\(\Leftrightarrow8m+1=0\)

\(\Leftrightarrow m=-\dfrac{1}{8}\)

Thay \(m=-\dfrac{1}{8}\) vào pt 

\(\Rightarrow x^2+\left[2.\left(-\dfrac{1}{8}\right)+1\right]x-\dfrac{1}{8}\left(-\dfrac{1}{8}-1\right)=0\)

\(\Rightarrow x^2+\dfrac{3}{4}x+\dfrac{9}{64}=0\)

\(\Rightarrow x=-\dfrac{3}{8}\)

\(b,\) Thay \(m=1\) vào pt :

\(\Rightarrow x^2+\left(2.1+1\right)x+1\left(1-1\right)=0\)

\(\Rightarrow x^2+3x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

Để phương trình có nghiệm kép thì 6^2-4(m-2)=0

=>4(m-2)=36

=>m-2=9

=>m=11

=>x^2+6x+9=0

=>x=-3

25 tháng 2 2022

Ta có:\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.m=4m^2+4m+1-4m=4m^2+1>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt