Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(m-1)x2+2(m-1)x-m
pt bậc 2 có dạng ax2+bx+c=0.
a=(m-1);b=(m-1);c=-m
áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]
Để pt có nghịm kép =>Denta=0
=>(m-1)2-4[(-m)*(m-1)]=0
=>m=1 hoặc m=0
Thay với m=1 vào và m=0 vào tự tính
b)Để pt có 2 nghiệm phân biệt thì Denta>0
=>(m-1)2-4[(-m)*(m-1)]>0
=>5m2-6m+1>0
Giải BPT này ra
à mk thêm 1 bước nữa để bạn giải cho nhẹ
5m2-6m+1>0
<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt
a: Khi m=0 thì (1) sẽ là x2-1=0
=>x=1 hoặc x=-1
b: Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow\left(-m\right)^2-4\left(m-1\right)=0\)
\(\Leftrightarrow m^2-4m+4=0\)
=>m-2=0
hay m=2
Để phương trình có nghiệm kép thì 6^2-4(m-2)=0
=>4(m-2)=36
=>m-2=9
=>m=11
=>x^2+6x+9=0
=>x=-3
a/ Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)
\(\Leftrightarrow13-8m>0\)
\(\Leftrightarrow m< \frac{13}{8}\)
b/ Để phương trình có nghiệm kép thì
\(\Delta=1^2-4.m=0\)
\(\Leftrightarrow m=0,25\)
Nghiệm kép đó là: \(x=-0,5\)
x 2−3x+2m+1=0
ta có: \(\Delta=\left(-3\right)^2-2m+1\)= -2m+10
Phương trình có nghiệm kép khi:
\(\Delta=0\Leftrightarrow-2m+10=0\)
<=>-2m=-10
<=>m=5
Vậy m=5 thì pt có nghiemj kép
Δ=(-4)^2-4*2*(m-5)
=16-8(m-5)=16-8m+40=-8m+56
Để phương trình có nghiệm kép thì 56-8m=0
=>m=7
=>2x^2-4x+2=0
=>x^2-2x+1=0
=>x=1
a: TH1: m=3
=>2x-5=0
=>x=5/2(nhận)
TH2: m<>3
Δ=2^2-4*(m-3)*(-5)
=4+20(m-3)
=4+20m-60=20m-56
Để phương trình có nghiệm kép thì 20m-56=0
=>m=2,8
=>-0,2x^2+2x-5=0
=>x^2-10x+25=0
=>x=5
b: Để phươg trình có hai nghiệm pb thì 20m-56>0
=>m>2,8
\(a,\)Để pt \(x^2+\left(2m+1\right)x+m\left(m-1\right)=0\) có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-m\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4m=0\)
\(\Leftrightarrow8m+1=0\)
\(\Leftrightarrow m=-\dfrac{1}{8}\)
Thay \(m=-\dfrac{1}{8}\) vào pt
\(\Rightarrow x^2+\left[2.\left(-\dfrac{1}{8}\right)+1\right]x-\dfrac{1}{8}\left(-\dfrac{1}{8}-1\right)=0\)
\(\Rightarrow x^2+\dfrac{3}{4}x+\dfrac{9}{64}=0\)
\(\Rightarrow x=-\dfrac{3}{8}\)
\(b,\) Thay \(m=1\) vào pt :
\(\Rightarrow x^2+\left(2.1+1\right)x+1\left(1-1\right)=0\)
\(\Rightarrow x^2+3x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)